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Abstract

How should authorities that care about match quality and diversity allocate resources

when they are uncertain of the market they face? We propose a new class of adap-

tive priority mechanisms (APM) that prioritize agents as a function of both scores

(reflecting match quality) and the socioeconomic characteristics of the assigned agents

(reflecting diversity). For a single authority with separable preferences over scores and

characteristics, we derive an APM that is optimal, generates a unique outcome, and

depends solely on the authority’s preferences. By contrast, the ubiquitous priority and

quota mechanisms are optimal if and only if the authority is risk-neutral or extremely

risk-averse over diversity, respectively. With many authorities, it is dominant for each

of them to use the optimal APM, and each so doing implements the unique stable

matching. Using data from Chicago Public Schools, we benchmark the gains from

adopting APM and find that they may be considerable.
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1 Introduction

Authorities that allocate resources such as school seats, university places, and medical sup-

plies often face conflicting objectives. On the one hand, they want to maximize match quality

or appear fair by allocating resources to the highest-scoring agents according to various cri-

teria such as academic attainment, mortality risk, or distance. On the other hand, they want

to achieve diversity across a range of socioeconomic attributes including race, religion, and

gender. Resolving this conflict is complicated, especially in new markets, due to uncertainty

regarding the distribution of individuals’ scores, characteristics, and preferences.

To balance these trade-offs, when the use of prices is seen as infeasible or unethical,

authorities have broadly used two classes of policies: quotas,1 where a certain portion of

the resource is set aside for given groups; and priorities, where individuals in given groups

receive higher scores. These policies have been applied across many different markets in many

different countries, for example: the Indian government reserves some government jobs for

disadvantaged groups; Chicago Public Schools employs quotas for students from different

socioeconomic groups at its competitive exam schools; the University of California, Davis

instituted a quota system for minority students; many countries gave differential priority

to healthcare workers in the receipt of Covid-19 vaccines; church-run schools in the UK

give explicit priority points to students from various religious groups; and the University of

Michigan and the University of Texas have used different priority scales for minority students.

But what mechanism should such an authority use? Despite the practical importance of

this question, we do not know if (and under what circumstances) an authority should use a

priority mechanism, a quota mechanism, or something else entirely.

In this paper, we formulate and solve the optimal mechanism design problem of an

authority that allocates a resource to agents who are heterogeneous in their individual scores

and belong to different groups. The authority cares about individuals’ scores, through some

aggregate index, and diversity, through the numbers of agents from different groups who are

allocated the resource.2 Moreover, they are uncertain about the market they face and have

some beliefs about the joint distribution of scores and groups in the population.

1We use quota as a general term that includes the widely used reserve policies (see Definition 4).
2This diversity preference can be interpreted more generally as encoding a preference of the authority

over the composition of assigned agents across a range of attributes, e.g., when allocating medical resources,
the authority may care about ensuring that frontline medical workers are treated. Moreover, when scores
represent individuals’ property rights over objects (e.g., higher-scoring students deserve better schools), we
can interpret the preference for higher scores as a preference for procedural fairness. Whenever a lower-
scoring agent obtains the resource while a higher-scoring agent does not, the latter agent has justified envy
towards the former. In the two-sided matching literature, justified envy is often seen as inimical to fairness
(see e.g., Balinski and Sönmez, 1999).

1



We propose a new class of adaptive priority mechanisms (APM) that adjust agents’ scores

as a function of the number of assigned agents with the same characteristics and that allocate

the resource to the set of agents with the highest adjusted scores. With a single authority,

we derive an APM that is optimal, implements a unique outcome, and can be specified solely

in terms of the preferences of the authority (i.e., it is optimal regardless of their beliefs).

By contrast, we show that priorities and quotas are optimal if and only if risk aversion over

diversity is extremely low or high, respectively. Moreover, optimally set priority and quota

policies depend on both the preferences and beliefs of the authority. Thus, the optimal APM

both improves outcomes and requires less information. When there are many authorities,

it is dominant for each of them to implement this APM and this leads to the unique stable

outcome.

Single-Authority Model. We begin our analysis by studying a setting with a single

authority that has some amount of a homogeneous resource (e.g., seats at a school, medical

resources) that it can allocate to a continuum of agents.3 Agents differ in their scores (e.g.,

exam score, clinical need) and discrete attributes (e.g., socioeconomic status, if they are

a frontline health worker). The authority cares separably about some index of the score

distribution (e.g., the average score) of those to whom it allocates the resource and the

numbers of agents from different groups. As a result, the preferences of the authority over

agents depend on the joint distribution of agents’ scores and groups. We assume that this

distribution is potentially unknown and varies arbitrarily across states of the world. The

authority’s problem is to design an allocation mechanism that is optimal regardless of their

beliefs, a property that we call first-best optimality.

Adaptive Priority Mechanisms. To this end, we introduce the class of adaptive priority

mechanisms (APM), which proceed in two steps. First, each agent is given an adaptive

priority that is a function of their own score and the number of agents from the same

group to whom the resource is assigned. Second, APM allocate the resource to agents in

order of adaptive priorities, subject to fully allocating the available amount. This class of

mechanisms allows the implicit preference for agents from different groups to depend upon

the ultimate allocation. The allocation under an APM is defined as the fixed point of the

above operation: an allocation is implemented by APM if the adaptive priority of all agents

who are allocated the resource (evaluated at the allocation) is higher than those who are not

allocated the resource. When an agent’s adaptive priority is increasing in their own score and

decreasing in the number of agents with the same attributes that are assigned the resource

– a property we call monotonicity – the APM implements a unique allocation. Moreover,

3In Appendix G, we generalize our analysis and results to a setting with discrete agents.

2



this allocation can be computed greedily by prioritizing agents according to their adaptive

priority, evaluated at the number of higher-scoring agents in their group.

Most importantly, we derive a particular, monotone APM that is first-best optimal.

Under this optimal APM, an agent’s priority is equal to the contribution of their own score

plus their marginal contribution to diversity utility. Intuitively, this mechanism equates

the benefits and costs of allocating to the marginal agent, regardless of the ultimate joint

distribution of agents’ scores and groups. Moreover, this APM can be described solely as a

function of the authority’s preferences, without any reference to its beliefs.

(Sub)Optimality of Priorities and Quotas. We next establish that priority and quota

mechanisms are generally dominated by APM. We do so by characterizing the conditions on

the preferences of the authority such that priorities and quotas attain first-best optimality.

Concretely, we find that priorities and quotas are first-best optimal if and only if (i) the au-

thority is risk-neutral over diversity, in which case priorities are optimal, or (ii) the authority

is extremely risk-averse over diversity, in which case quotas are optimal. Hence, outside of

extreme cases, APM deliver strict improvements relative to the status quo.

A Price-Theoretic Intuition. To both illustrate and develop the intuition behind these

results, we study a detailed example that allows for a closed-form comparison of priorities,

quotas, and the optimal adaptive priority mechanism. We do this in the spirit of the seminal

analysis of Weitzman (1974), who compares price and quantity regulation in product markets.

In the example, the resource corresponds to seats at a school and there are two groups of

students (minority and majority students). The authority is uncertain over the relative scores

of minority and majority students, and has linear-quadratic preferences over the scores of

admitted students and the number of minority students admitted to the school.

The preference of the authority between priority and quota mechanisms is governed by its

risk aversion over the number of admitted minority students: there is a cutoff value such that

quotas are preferred when risk aversion exceeds this threshold and priorities are otherwise

preferred. On the one hand, by mandating a minimal level of minority admissions, quotas

guarantee a level of diversity. On the other hand, as relatively more minority students receive

the resource in the states in which they have relatively higher scores, priorities positively select

minority students. Adaptive priority mechanisms optimally exploit the guarantee effects of

quotas and the positive selection effects of priorities, and are always optimal.

Dominance and Stability with Multiple Authorities. While the single-authority

model is relevant for studying settings with a single resource, in many markets there are mul-

tiple authorities who control heterogeneous resources (e.g., school seats) over which agents

have heterogeneous preferences. We generalize our analysis to this setting and show that
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APM arise under both cooperative (stability) and non-cooperative (dominant-strategy equi-

librium) solution concepts. We first show that there is a unique stable allocation. This

constitutes a methodological contribution as we establish the uniqueness of stable alloca-

tions in continuum economies in which authorities have preferences between agents that

are endogenous to the ultimate allocations (extending Theorem 1.1 of Azevedo and Leshno,

2016). Moreover, we characterize this unique stable allocation and show that a mechanism

is consistent with stability if and only if it coincides with the single-authority-optimal APM.

Furthermore, when authorities sequentially admit agents, each authority using its single-

authority-optimal APM is a dominant strategy and implements the unique stable matching.

Thus, APM are not only privately optimal but also inherent to the structure of stability.

These results imply that one could advise authorities to use APMs with confidence that

outcomes will be stable and that they could do no better under any alternative mechanism.

Benchmarking the Gains from APM in Chicago Exam Schools. To obtain a sense

of the practical benefit of using APM, we benchmark the improvements from APM using

application and admission data from 2013-2017 on the selective exam schools of Chicago

Public Schools (CPS), a setting also empirically studied by Angrist, Pathak, and Zárate

(2019) and Ellison and Pathak (2021). CPS uses a reserve system to increase the admis-

sions of underrepresented groups. In this system, as we later detail, academic scores and the

socioeconomic tiers of the census tracts in which students live determine the schools that

students can attend. Estimating preference parameters to best rationalize the pursued re-

serve policy, we find that the gains from using the optimal APM are equivalent to eliminating

37.5% of the loss to CPS’ payoffs from failing to admit a diverse class of students. This gain

is 2.3 times larger than the estimated gain from a 2012 policy change that increased the size

of all reserves. This proof-of-concept exercise shows both that APM could be practically

implemented and that the gains from so doing may be considerable.

Related Literature. The market design literature has largely studied the comparative

statics and axiomatic foundations of mechanisms. In this context, our paper relates to the

literature on matching with affirmative action concerns initiated by Abdulkadiroğlu and

Sönmez (2003) and Abdulkadiroğlu (2005). For example, in the study of quotas, Kojima

(2012) shows how affirmative action policies that place an upper bound on the enrollment of

non-minority students may hurt all students, Hafalir, Yenmez, and Yildirim (2013) introduce

the alternative and more efficient minority reserve policies, Ehlers, Hafalir, Yenmez, and

Yildirim (2014) generalize reserves to accommodate policies that have floors and ceilings for

minority admissions, and Doğan (2016) shows that stronger affirmative action can (weakly)

harm all minority students under reserve policies and proposes a new rule that fixes this
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issue. The quota policies studied in this paper are a special case of the slot-specific priorities

introduced in Kominers and Sönmez (2016). Further related papers study quota policies in

university admissions in India (Aygün and Turhan, 2020; Sönmez and Yenmez, 2022a,b), in

Germany (Westkamp, 2013) and in Brazil (Aygun and Bó, 2021). Kamada and Kojima (2017,

2018) and Goto, Kojima, Kurata, Tamura, and Yokoo (2017) study stability and efficiency in

more general matching-with-constraints models. Echenique and Yenmez (2015) characterize

a class of substitutable choice rules under diversity preferences, Erdil and Kumano (2019)

study tie-breaking rules under substitutable priorities under stable matching mechanisms and

distributional constraints, and Imamura (2020) presents axioms to compare the meritocracy

and diversity of different choice rules and characterizes reserves and quotas. Çelebi (2022)

studies when affirmative action policies, including quota policies, can be rationalized by

diversity preferences.

In this paper, we instead pursue the methodological approach of mechanism design and

welfare economics by analyzing optimal mechanisms from the perspective of an authority

with some given preferences over allocations. Chan and Eyster (2003) share this perspective

in their analysis of the costs and benefits of banning affirmative action.4 In this vein, we have

previously analyzed the narrower problem of how to optimally coarsen agents’ scores into

priorities (Çelebi and Flynn, 2022) in a continuum matching market framework in the style

of Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016). This analysis

nevertheless restricted authorities to use a priority mechanism that does not consider agents’

characteristics and implement only allocations that are stable with respect to these priorities.

Thus, our focus on comparing priorities, quotas, and optimal mechanisms distinguishes our

analysis from our prior work and the previous literature, which study the properties of each

policy in isolation and without an explicit treatment of uncertainty.

Outline. Section 2 exemplifies our main results. Section 3 studies optimal mechanisms

with a single authority. Section 4 studies equilibrium mechanisms with many authorities.

Section 5 quantifies the gains from APM using data from Chicago Public Schools. Section

6 concludes. The proofs of all Theorems are in Appendix A and the proofs of Propositions

are in Appendix B.

2 Comparing Mechanisms: An Example

The Setting. A single school has capacity q. Students are of unit total measure, have

scores in [0, 1], and are either minority or majority students. The authority has linear-

4Other analyses of this issue include Epple, Romano, and Sieg (2008) and Temnyalov (2023).

5



Figure 1: How Priorities, Quotas, and APM Prioritize Minority Students
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Note: Illustration of the equivalent priority given to a minority student as a function of the measure
of admitted minority students under: the optimal APM (see Proposition 1), a priority mechanism
α, and a quota mechanism Q.

quadratic preferences ξ : R2 → R over students’ total scores s̄ and the measure of admitted

minority students x:

ξ(s̄, x) = s̄+ γ

(
x− β

2
x2

)
(1)

where γ ≥ 0 indexes their general concern for admitting minority students relative to en-

suring high scores and β ≥ 0 indexes the degree of risk aversion regarding the measure of

admitted minority students.

The minority students are of measure κ and have scores that are uniform over [0, 1].

The majority students are of measure 1 − κ and all have common underlying score ω ∈
[ω, ω] ⊆ [0, 1] with distribution Λ. The score of the majority students, ω, parameterizes

how well the majority students score relative to the minority students. Finally, we assume

that the affirmative action preference is neither too small nor too large with the following:

min{κ, q} > 1+γ−ω
1
κ

+γβ
+ κ(ω − ω), κ(1 − ω) < 1+γ−ω

1
κ

+γβ
. These conditions ensure that optimal

affirmative action policies will neither be so large as to award all slots to minority students

in some states nor so small that there is no affirmative action in some states.

The authority can implement an APM, a priority mechanism, or a quota mechanism. An

APM awards a score boost of A(y) to a minority student when measure y other minority

students are admitted, and allocates the seats to the highest-scoring minority students who

have transformed scores higher than ω.5 An (additive) priority mechanism α ∈ R+ increases

uniformly the scores of minority students: the score used in admissions becomes uniform

5Formally, this happens when s(x(ω)) + A(x(ω)) = ω, where s(x(ω)) denotes the score of the marginal
minority student when the highest-scoring x(ω) minority students are admitted.
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over [α, 1 + α]. The authority then admits the highest-scoring measure q students. A quota

policy Q ∈ [0,min{κ, q}] sets aside measure Q of the capacity for the minority students. The

measure Q highest-scoring minority students are first allocated to quota slots, and all other

agents are then admitted to the residual q −Q places according to the underlying score.6

We illustrate how these three policies prioritize minority students in Figure 1. Priority

mechanisms award a constant score boost of α. Quota mechanisms give enough points to

always ensure admission until measure Q is reached and then give no advantage. APM allow

any pattern of prioritization as a function of minority admissions (we plot only the optimal

APM, which turns out to be linear in this context).

Comparing Mechanisms. Let the authority’s expected utility be V ∗ under any optimal

(expected utility maximizing) mechanism, VA under an optimal adaptive priority mechanism,

VP under an optimal priority mechanism, and VQ under an optimal quota mechanism. The

following proposition characterizes the relationships between these mechanisms:

Proposition 1. The following statements are true:

1. The APM A(y) = γ(1− βy) is optimal, V ∗ = VA

2. The comparative advantage of priorities over quotas is given by:

∆ ≡ VP − VQ =
κ

2
(1− κγβ) Var[ω] (2)

3. The comparative advantage of APM over priorities and quotas is given by:

∆∗ ≡ min{V ∗ − VP , V ∗ − VQ} =

1
2

(κγβ)2 κVar[ω]
1+κγβ

, κγβ ≤ 1,

1
2
κVar[ω]
1+κγβ

, κγβ > 1.
(3)

We now develop intuition for the comparative advantage of priorities over quotas. First,

observe that a quota of Q admits measure Q minority students in all states of the world

under our assumptions. However, a priority policy induces variability in the measure of

admitted minority students across states of the world. We call the gain to quota policies in

eliminating this variation the guarantee effect and find mathematically that it is equal to
κ
2

(1 + κγβ) Var[ω] in payoff terms.

Second, the optimal priority policy admits more minority students when minority stu-

dents score relatively well and fewer when minority students score relatively poorly. To

demonstrate this, we show that minority admissions in state ω under the optimal priority

policy are x(α, ω) = x̄(α) + ε(ω) where x̄(α) = κ(1 + α − E[ω]) and ε(ω) = κ (E[ω]− ω).

Thus, in the states where minority students score relatively better (ω < E[ω]), we have that

6This corresponds to a precedence order that processes quota slots first. We discuss the importance of
precedence orders in Section 2.1 and in Appendix C.3.
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Figure 2: Comparative Statics for the Positive Selection and Guarantee Effects

0

Risk Aversion, 

Si
ze

 o
f E

ffe
ct

1

Var[ ]

Positive Selection
Guarantees

0

Sensitivity, 

0
1

Positive Selection
Guarantees

Note: Illustration of the comparative statics for the trade-offs between priority and quota mech-
anisms. Positive Selection plots the positive selection effect, κVar[ω], and Guarantee plots the
guarantee effect, κ

2 (1 + κγβ) Var[ω]. As per Equation 2 in Proposition 1, priorities dominate quo-
tas if and only if 1 ≥ κγβ, where the point of indifference is denoted by the dashed grey line.

ε(ω) > 0 and x(α, ω) > x̄(α). We call this effect the positive selection effect and find that

this benefits a priority policy by −Cov[ω, ε(ω)] = κVar[ω] in payoff terms.

The ultimate preference between priority and quota mechanisms is determined by which

of the guarantee and positive selection effects dominates. This is itself determined by the

extent to which the authority values diversity γ, the risk preferences of the authority β,

and the measure of minority students κ. We illustrate how risk aversion and the measure

of minority students affect the sizes of the positive selection and guarantee effects in Figure

2. If the authority is close enough to risk-neutral (i.e., 1
κγ
> β), then priorities are strictly

preferred as positive selection dominates guarantees. If the authority is sufficiently risk-averse

(i.e., 1
κγ
< β), then quotas are strictly preferred as the guarantee effects dominate positive

selection. The threshold for risk aversion scales inversely with the measure of minority

students κ. Because minority students’ scores are uniform, κ corresponds to the density of

minority students’ scores. Hence, the change in minority admissions from a small change

in their priority equals κ. Thus, κ indexes the sensitivity of minority admissions to the

state under priority policies. As a result, higher κ favors quota policies by increasing the

magnitude of the guarantee effect relative to the positive selection effect. Finally, the extent

of uncertainty Var[ω] may intensify an underlying preference but never determines which

regime is preferred.

An APM is optimal and overcomes the limitations posed by both priorities and quotas.

In this case, the optimal APM is linear in the measure of admitted minority students, with

slope given by the authority’s risk aversion over minority admissions, awarding each minority
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Figure 3: Comparative Statics for the Losses from Priorities and Quotas
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Note: Illustration of the comparative statics for the losses from optimal priority and quota policies
relative to the optimal APM (as presented in Equation 3 in Proposition 1). The lower envelope of
the losses, ∆∗, corresponds to the comparative advantage of the optimal APM over priorities and
quotas. The point of indifference between priorities and quotas is denoted by the dashed grey line.

student a subsidy equivalent to their marginal contribution to the diversity preferences of

the authority. This allows the adaptive priorities to optimally balance the positive selection

and guarantee effects, and implement the first-best allocation in every state. In Figure 3,

we illustrate how the losses from priority mechanisms and quota mechanisms vary with risk

aversion and sensitivity. As risk aversion moves, the loss from priority and quota policies

relative to the optimum is greatest when the authority is indifferent between the two regimes.

The loss from restricting to priority or quota policies is zero when the authority is risk-neutral

or there is no uncertainty regarding relative scores, and decreases as the authority becomes

extremely risk-averse. As sensitivity increases, the scope for affirmative action increases and

so the gains from APM also increase. Thus, we should expect there to be large gains from

switching to APM precisely when authorities have intermediate levels of risk aversion and/or

the scope for implementing affirmative action is significant.

Finally, optimal APM have an advantage with respect to priority and quota mechanisms

that we have not yet highlighted: they depend only on the authority’s preferences, γ and β,

and not their beliefs about ω, Λ. This contrasts with the optimal priority and quota policies,

which depend on Λ.7 As a result, APM improve outcomes while using less information.

7The optimal quota policy is given by Q∗ = 1+γ−E[ω]
1
κ+γβ

, while the optimal priority policy sets the expected

measure of minorities to Q∗. The policies depend on Λ through E[ω].
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2.1 Discussion

Before moving to the general analysis, we discuss three additional findings that emphasize

the broader economics and scope of these results.

A Price-Theoretic Intuition. This comparison of priorities vs. quotas echoes the com-

parison of prices vs. quantitities by Weitzman (1974). We show in Appendix C.1 that there

is a formal mapping between the two.8 Intuitively, the positive selection effect is equivalent

to the effect that price regulation gives rise to the greatest production in states where the

firm’s marginal cost is lowest. Moreover, the guarantee effect is equivalent to the ability of

quantity regulation to stabilize the level of production. An APM corresponds in the Weitz-

man (1974) setting to a regulator setting neither a price nor a quantity, but completely

specifying the optimal demand curve. As in Weitzman’s analysis, this allows the authority

to implement the optimal allocation, regardless of the firm’s realized marginal costs. Thus,

in this context, the comparison of mechanisms for allocating goods without prices boils down

to similar trade-offs between well-understood price-based mechanisms for goods allocation.

Medical Resource Allocation. In Appendix C.2, we apply this model to understand the

trade-offs between priority and quotas in the context of medical resource allocation. This

topic received enormous attention during the Covid-19 pandemic (see e.g., Pathak, Sönmez,

Unver, and Yenmez, 2021). Our analysis provides a formal justification for the idea that

priorities may lose out relative to quotas from ignoring some groups or ethical values in the

allocation of scarce resources (the guarantee effect). However, we also uncover a benefit of

priorities that was not previously understood: they induce positive selection. Thus, if we

care mostly about treating the neediest (β is low), priorities may yet be optimal.9

Optimal Precedence Orders. We have modelled quotas by first allocating minority

students to quota slots and then allocating all remaining students according to the underlying

score. However, we could have done the opposite. The orders in which quotas are processed

are called precedence orders in the matching literature and their importance has been the

subject of a growing literature (see e.g., Dur, Kominers, Pathak, and Sönmez, 2018; Dur,

Pathak, and Sönmez, 2020; Pathak, Rees-Jones, and Sönmez, 2022). In Corollary 1 in

8Mapping Weitzman’s curvature of production costs C ′′−1 7→ κ, curvature of benefits to consumers
B′′ 7→ −γβm, and uncertainty over marginal costs Var[α(θ)] 7→ Var[ω], we have that Weitzman’s ∆ coincides
with our own. See Appendix C.1 for more details.

9Inspired by the uncertainty over the number of medical professionals and the general population who
were expected to need scarce medical resources at the onset of the Covid-19 pandemic, we consider an
extension where there is also uncertainty over the number of medical professionals who get sick, κ. We
show that an increase in the uncertainty regarding the need of frontline workers Var[κ] leads to a greater
preference for quotas. This can be seen diagrammatically in Figure 2 (and is formally shown in Appendix
C.2), as the guarantee effect is convex in κ.
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Appendix C.3, we show that processing quotas second is equivalent to using a priority policy

in this setting. Thus, processing quotas first is better than processing them second if and

only if 1 ≤ κγβ. We emphasize that this equivalence merely illustrates the similarity between

priority policies and processing quotas second and does not hold in the more general model

we study in the remainder of the paper. This notwithstanding, the main aspect of this

conclusion is robust: in Theorem 2, we show that for any quota policy to be optimal in

the presence of uncertainty, it must process quotas first. In the absence of uncertainty, in

Appendix H, we show that priority and quota mechanisms are equivalent and use this to

quantify the impact of changes in precedence orders for US H1-B visa allocation.

3 Optimal Mechanisms with a Single Authority

We begin our general analysis by studying the resource allocation problem of a single author-

ity. In this context, we define APM and derive an optimal APM that attains the first-best.

We moreover provide necessary and sufficient conditions for the optimality of the ubiquitous

priority and quota mechanisms and find that they are extremely restrictive, implying that

there are likely gains from switching to APM.

3.1 Model

An authority allocates a single resource of measure q ∈ (0, 1). Agents differ in their type

θ ∈ Θ = [0, 1] ×M comprising their scores s ∈ [0, 1] and the group to which they belong,

m ∈ M, where their score denotes their suitability for the resource and M is a finite set

comprising potential attributes such as race, gender, or socioeconomic status. We denote

the score and group of any type θ by s(θ) and m(θ), respectively. The true distribution of

types is unknown to the authority. The authority’s uncertainty is parameterized by ω ∈ Ω,

where Ω is the set of all distributions over Θ that admit a density. The authority believes

that ω has distribution Λ ∈ ∆(Ω). In state of the world ω, we denote the measure of types

by Fω with density fω.10 In Appendix G, we translate our analysis and results to the discrete

context.

An allocation µ : Θ → {0, 1} specifies for any type θ ∈ Θ whether they are assigned to

the resource.11 Two allocations µ and µ′ are essentially the same if they coincide up to a

measure zero set. The set of possible allocations is U . An allocation is feasible if it allocates

no more than measure q of the resource. A mechanism is a function φ : Ω→ U that returns

a feasible allocation for any possible measure of types.

10Formally, we mean that fω(s,m) = ∂
∂sFω(s,m) exists for all s ∈ [0, 1] and m ∈M.

11Formally, µ is a measurable function with respect to the Borel σ−algebra of the product topology in Θ.

11



As motivated, authorities often have preferences over scores and diversity. To model this,

we define the aggregate score index of any allocation as:

s̄h(µ, ω) =

∫
Θ

µ(s,m)h(s)dFω(s,m) (4)

for some continuous, strictly increasing function h : [0, 1]→ R+, which determines the extent

to which the authority values agents with higher scores. To capture diversity, we compute

the measure of agents of each group allocated the resource x(µ, ω) = {xm(µ, ω)}m∈M as:

xm(µ, ω) =

∫
[0,1]

µ(s,m)fω(s,m)ds (5)

To separate the roles of scores and diversity, we impose that their utility function over

these dimensions ξ : R|M|+1 → R satisfies the following separability assumption:12

Assumption 1. The authority’s utility function can be represented as:

ξ (s̄h, x) ≡ g

(
s̄h +

∑
m∈M

um(xm)

)
(6)

for some continuous, strictly increasing function g : R → R and differentiable and concave

functions um : R→ R for all m ∈M.

We also assume that the authority always prefers to allocate the entire resource.13 The

preference of the authority is a monotone transformation of a quasi-linear utility index com-

prised of scores and a diversity preference. Intuitively, um determines the preference for

assigned agents of group m, with its concavity following from a preference for diversity.14

The function g determines their risk preferences over their utility over scores and diversity

across states of the world.

As we later show, this assumption allows for particularly simple functional forms for

optimal mechanisms. We explore the robustness of our results to relaxing this assumption

in Appendix F. We show that our results are essentially unchanged when preferences are

non-separable over diversity, i.e., when
∑

m∈M um(xm) is replaced with u(x). The essential

12The assumption of separable preferences over scores and diversity is common in the literature on af-
firmative action concerns (see e.g., Athey, Avery, and Zemsky, 2000; Chan and Eyster, 2003; Ellison and
Pathak, 2021).

13A necessary and sufficient condition for this is: h(0) + u′m(q) ≥ 0 for all m ∈ M. This condition is
clearly sufficient, the lowest utility the authority can get from allocating the resource is always positive. It
is also necessary: if h(0) + u′m(q) < 0 for some m, in the state of the world where there are only measure q
of group m agents with uniform score distribution, the authority would prefer not to allocate a portion of
the resource to the lowest-scoring agents.

14Note that um depends on m, so our specification allows the designer to have different preferences for
allocating the resource to agents from different groups. For example, this allows for a designer with affirmative
action motives who prefers to assign the resource to some particular group m: u′m(x) > u′m′(x) for all x or
a designer who prefers a balanced composition of allocated agents: u′m(x) = u′m′(x) for all m ∈M.
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assumption for our results is the separability of diversity and score preferences. When this

fails, it is no longer possible to specify optimal mechanisms without explicitly conditioning

the allocation on the realized distribution of agents. As a result, our analysis will not apply

to situations in which there is complementarity or substitutability in preferences over match

quality and diversity.

We define the value of a mechanism φ under distribution Λ as the authority’s expected

utility of the allocations induced by that mechanism:

Ξ(φ,Λ) =

∫
Ω

ξ(s̄h(φ(ω), ω), x(φ(ω), ω))dΛ(ω) (7)

We say that a mechanism is first-best optimal if it maximizes the authority’s expected utility

for all possible distributions of measures of agents’ characteristics.

Definition 1 (First-Best Optimality). A mechanism φ∗ is first-best optimal if:

Ξ(φ∗,Λ) = sup
φ

Ξ(φ,Λ) (8)

for all Λ ∈ ∆(Ω).

This is a demanding property for a mechanism to possess. Indeed, as the example

from Section 2 shows, priority and quota mechanisms can fail to be first-best optimal while

APM can attain first-best optimality. In the remainder of this section, we formally define

APM, show that (when suitably designed) they are first-best optimal, and characterize the

conditions under which priorities and quotas are first-best optimal.

3.2 Adaptive Priority Mechanisms

Toward deriving a first-best optimal mechanism, we introduce APMs. To this end, we first

introduce an adaptive priority policy A = {Am}m∈M, where Am : R × [0, 1] → R. The

adaptive priority policy assigns priority Am(ym, s) to an agent with score s in group m when

measure ym of agents of the same group is allocated the object. Given an adaptive priority

policy, an APM implements allocations in the following way:

Definition 2 (Adaptive Priority Mechanism). An adaptive priority mechanism, induced by

an adaptive priority A, implements an allocation µ in state ω if the following are satisfied:

1. Allocations are in order of priorities: µ(θ) = 1 if and only if for all θ′ with µ(θ′) = 0,

we have that:

Am(θ)(xm(θ)(µ, ω), s(θ)) > Am(θ′)(xm(θ′)(µ, ω), s(θ′)) (9)
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2. The resource is fully allocated: ∑
m∈M

xm(µ, ω) = q (10)

With some abuse of terminology, we will often refer to an APM as the adaptive priority

A that induces it. By way of illustration, we provide a simple example of the flexibility of

APM to act like a hybrid of priority and quota policies.

Example 1. Let M = {m,n}. Both groups have measure 0.5 and capacity is q = 0.5. We

consider the adaptive priority policy A = {Am, An} given by:

Am(x, s) = s, An(x, s) =


s+ 1 if x ≤ 0.1

s+ 0.1 if x ∈ (0.1, 0.25)

s if x ≥ 0.25

(11)

This leaves the score of group m agents unchanged and gives agents of group n a score boost

of: 1 if less than measure 0.1 group n agents is assigned, 0.1 if between measure 0.1 and 0.25

group n agents is assigned, and no score boost at all if measure greater than 0.25 group n

agents is assigned.

To understand the properties of this adaptive priority policy, observe that the highest-

scoring measure 0.1 group n agents is guaranteed the resource, even in states where they

score badly. Therefore, An practically embeds a quota of 0.1. For admissions levels between

0.1 and 0.25, the APM acts like a priority policy and boosts the scores of group n agents by

0.1, increasing the admissions of group n when group n agents score moderately well. For

admissions levels beyond 0.25, group n agents are given no further advantage. Thus, when

diversity is attained, this APM “phases out” and no longer advantages any group. 4

At this point, we have not established that a given APM implements any allocation

at all, or that it implements a unique allocation (i.e., it may not even be a mechanism).

However, there is a natural subclass of APM that do implement a unique allocation: those

that are monotone. An APM A is monotone when (i) Am(·, s) is a decreasing function for all

m ∈M, s ∈ [0, 1] and (ii) Am(ym, ·) is a strictly increasing function for all m ∈M, ym ∈ R.15

Proposition 2. Any Monotone APM A implements an essentially unique allocation.

Moreover, the unique outcome of a monotone APM can be implemented “greedily:”16

15Observe that monotone adaptive priority mechanisms are fair in the sense that they preserve the ranking
of agents within any group and assign higher priority to an agent whenever there are fewer agents from her
group who are allocated the resource.

16Formally, when we consider an Adaptive Priority Mechanism, we are studying any selection from the set
of allocations that the APM implements. As monotone APMs implement an essentially unique allocation,
this is without loss of optimality. When we refer to the “unique” allocation, we refer to the cutoff allocation
defined in the proof of Proposition 2 and which is implemented by Algorithm 1.
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Algorithm 1 (Greedy Algorithm for Implementation of APM). The greedy APM algorithm

proceeds in the following four steps:

1. For each θ, define

x(θ) =

∫ 1

s(θ)

fω(s,m(θ))ds (12)

as the measure of agents who have higher scores than θ and belong to same group.

2. Construct a ranking of the agents as

R(θ) = Am(θ)(x(θ), s(θ)) (13)

3. Define the cutoff ranking for the agents as Rω by∫
Θ

I{R(θ) ≥ Rω}dFω(θ) = q (14)

4. Allocate the resource to all θ with R(θ) ≥ Rω.

Intuitively, this algorithm works by ranking all agents by their score within each group m

and assigning agents in order of their transformed scores evaluated at the measure of already

assigned agents of the same group, conditional on their admission. Informally, the algorithm

greedily moves down the ranking of agents until the resource is exhausted.

3.3 Adaptive Priority Mechanisms Achieve the First-Best

Having shown that monotone APM implement a unique allocation and provided an algorithm

to compute this allocation, we now show that a certain, monotone APM is first-best optimal:

Theorem 1. The following APM is monotone and first-best-optimal:

A∗m(ym, s) ≡ h−1(h(s) + u′m(ym)) (15)

Moreover, if a mechanism is first-best-optimal, then it implements essentially the same allo-

cations as A∗.

Observe that A∗ is not only uniquely first-best optimal, it also requires only that the

authority knows its preferences over scores h and diversity um. Importantly, it need have no

knowledge of the underlying distribution of agents and can be fully specified even without

any knowledge of the nature or extent of uncertainty, Λ. Moreover, this mechanism does not

depend at all on the authority’s across-state risk preferences, g. This is because it achieves

the ex post optimal allocation in all states and so there is no need to trade-off gains and

losses across states (the preferences over which are exactly determined by g).

To gain intuition for the form of this mechanism, suppose that the authority has linear

utility over scores h(s) ≡ s. In this case, A∗m(ym, s) = s+ u′m(ym), so an agent in group m is
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awarded a boost of u′m(ym) when there are ym higher-scoring agents of the same group, their

direct marginal contribution to the diversity preferences of the authority. This is optimal

because this boost precisely trades off the marginal benefit of additional diversity with the

marginal costs of reduced scores. Moreover, failing to award this precise level of boost would

result in a suboptimal allocation. Thus, any optimal mechanism must be essentially identical

to the optimal APM we have characterized. To generalize this beyond linear utility of scores,

consider the following observation: we can map agents’ scores from s to h(s), and consider

the optimal boost in this space. As h is monotone, this preserves the ordinal structure of

the optimal allocation, and the authority has linear preferences over h(s). Thus, in this

transformed space, the optimal boost remains additive and given by u′m(ym). To find the

optimal transformed score in the original space, we simply invert the transformation h and

apply it to the optimal score in the transformed space, yielding the formula for the optimal

mechanism in Theorem 1.

3.4 (Sub)Optimality of Priorities and Quotas

We have shown that APM are optimal. However, the primary classes of mechanisms that

have been used in practice are priority and quota mechanisms. Therefore, it is important to

understand whether (and when) these mechanisms are also optimal. We now establish that

APM generally provide a strict improvement over priority and quota mechanisms.

We first formally define priority and quota mechanisms. A priority policy P : Θ→ [0, 1]

awards an agent of type θ ∈ Θ a priority P (θ).

Definition 3 (Priority Mechanisms). A priority mechanism, induced by a priority policy

P , allocates the resource in order of priorities until measure q has been allocated, with ties

broken uniformly and at random.

We define a quota policy as (Q,D), where Q = {Qm}m∈M and D : M ∪ {R} →
{1, 2, . . . , |M| + 1} is a bijection. The vector Q reserves measure of the capacity Qm for

agents in group m, with residual capacity QR = q −
∑

m∈MQm open to agents of all types.

The bijection D (the precedence order) gives the order in which the groups are processed.

Definition 4 (Quota Mechanisms). A quota mechanism, induced by a quota policy (Q,D),

proceeds by allocating the measure QD−1(k) agents from group D−1(k) (if there are sufficient

agents from this group) to the resource in ascending order of k, and in descending order of

score within each k. If there are insufficiently many agents of any group to fill the quota, the

residual capacity is allocated to a final round in which all agents are eligible.
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We now characterize when priority and quota mechanisms are (sub)optimal. To do this,

we first provide some definitions. Authority preferences are non-trivial if for all m,n ∈ M,

we have that:

h(1) + u′n(0) > h(0) + u′m(q) (16)

Intuitively, the authority’s preferences are non-trivial when their concerns for representation

of certain groups do not always outweigh the consideration of scores.17 The authority is risk-

neutral over diversity if for all m ∈ M, u′m : [0, q] → R is constant, i.e., there are constant

marginal returns to admitting more agents from all groups. If there are decreasing marginal

returns, then the authority’s preferences feature risk aversion. To define extremely risk-

averse preferences, let ũ, h̃ and {xtar
m }m∈M be as follows: (i) ũ′m(xm) = 0 for all xm > xtar

m (ii)

ũ′m(xm) ≥ h̃(1)− h̃(0) for xm ≤ xtar
m and (iii)

∑
m∈M xtar

m ≤ q. Intuitively, an authority whose

preferences are represented by ũ and h̃ is very risk-averse as the condition that ũ′m(xm) ≥
h̃(1)− h̃(0) implies that the loss from being below the target level for a group xtar

m dominates

any benefit from increased scores. Thus, they are infinitely risk-averse to failing to meet this

target. We say that the authority is extremely risk-averse if the authority’s preferences over

the optimal allocations can be represented by (ũ, h̃).18

Theorem 2. Suppose that the authority has non-trivial preferences. The following state-

ments are true:

1. There exists a first-best optimal priority mechanism if and only if the authority is

risk-neutral. Moreover, this mechanism is given by P (s,m) = h−1(h(s) + u′m).

2. There exists a first-best optimal quota mechanism if and only if the authority is ex-

tremely risk-averse. Moreover, this mechanism is given by Qm = xtarm and D(R) =

|M|+ 1.

Theorem 2 provides precise conditions on preferences such that the inability of priorities

and quotas to adapt to the state is not problematic. That risk-neutrality and high risk

aversion are sufficient for the optimality of priority and quota mechanisms is intuitive. On

the one hand, if the authority is risk-neutral over the measure of agents from different groups,

then they can perfectly balance their score and diversity goals without regard for the state of

the world. This is because, under risk-neutrality, there is a constant “exchange rate” between

the two: how the authority compares any two agents does not depend on the final allocation

17Note that failure of non-triviality means there exists m and n such that h(1) + u′n(0) ≤ +h(0) + u′m(q),
i.e., a group n agent with the maximum score is less preferred than a group m agent with the minimum
score even when all of the entire capacity is allocated to group m agents.

18More formally, this means that there exists (ũ, h̃) such that the optimal allocation under (u, h) is also
optimal under (ũ, h̃) for all ω ∈ Ω.

17



and thus can be specified ex ante by a priority policy. On the other hand, if the authority

is extremely risk-averse as to the prospect of failing to assign xtar
m agents from group m,

then a quota allows them to always achieve this target level of allocation in all states of the

world while minimally sacrificing scores. It is less obvious that risk-neutrality and high risk

aversion are necessary. We prove this result by constructing certain adversarial measures

of agents that render any priority or quota mechanism suboptimal unless the authority is

risk-neutral or extremely risk-averse, respectively. Importantly, this result also shows that

the only optimal quota mechanisms are those that process open slots last.

This result highlights the fragility of priority mechanisms to uncertainty absent the strong

assumption of risk-neutrality over diversity. Intuitively, this is because they feature no guar-

antees as to how many agents of different groups will be assigned. Indeed, the unfortunate

interaction between priority mechanisms and unforeseen market realizations has led to public

backlash against priority mechanisms. For example, in the Vietnamese university admissions

system, which combines exam scores with priority boosts for students from disadvantaged

groups, a year of unexpectedly easy exams led to “top-scoring students missing out on the

opportunity to attend their university of choice” and generated backlash against the system

(Tuoi Tre News, 2017). Moreover, in the Boston Public Schools system, a priority policy

that is set to award students bonus points for high school admissions based on the level of

disadvantage of their middle school has made it impossible for students from certain middle

schools to get into certain high schools, no matter their grades. This led the Boston Herald

(2022) to write that “in Boston, hard work and good grades will only set your child back.”

As APM dynamically adjust priorities, they have the potential to remedy these practical

deficiencies of priority mechanisms.

Moreover, our result highlights that quota mechanisms similarly fail to achieve the first-

best away from high levels of risk aversion as they do not take advantage of the potential for

positive selection. Our quantitative analysis in Section 5 in the context of quota mechanisms

in Chicago Public Schools suggests that the variation in the distribution of characteristics

across years generates meaningful welfare gains from switching to APM.

To formalize the connection between uncertainty and the importance of the adaptability

of APM, we consider a setting with no uncertainty, where Λ is a Dirac measure. In this

context, we say that a mechanism is optimal without uncertainty if it is a utility maximizer.

Proposition 3. If there is no uncertainty, then there exist optimal priority and quota mech-

anisms.

This result shows that if an authority is certain about the market, then appropriately

constructed priority and quota mechanisms would be optimal. This formalizes the idea that
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the suboptimality of priority and quota mechanisms stems from their inability to adapt to the

state. Of course, in practice, an authority is always somewhat uncertain of the market they

face. Thus, absent the strong conditions on authority preferences that we have characterized

in Theorem 2, APM dominate priority and quota mechanisms.

4 Equilibrium Mechanisms with Multiple Authorities

The single-authority model is relevant for many resource allocation contexts, such as the

medical resource allocation problem of a hospital. However, in other settings such as school

or university admissions, multiple authorities must decide upon their admissions policies and

rules. In this section, we generalize our single authority model to a setting with multiple au-

thorities. We define stability in this setting and show that there is a unique stable allocation.

Moreover, we show that a mechanism is consistent with stability if and only if it coincides

with the single-authority-optimal APM. We then consider a model where agents sequentially

apply to the authorities, who decide which agents to admit. We show that the optimal APM

is a dominant strategy. Moreover, we show that in any equilibrium in which authorities use

the optimal APM, the resulting allocation corresponds to the unique stable matching of the

economy. Taken together, our results provide cooperative (stability) and non-cooperative

(dominance) foundations for recommending the use of APM in multi-authority settings.

4.1 The Multi-Authority Model

There are authorities c ∈ C = c0 ∪ C̄ = {c0, c1, . . . , c|C|−1} with capacities qc, where c0 is

a dummy authority that corresponds to an agent going unmatched. The agents differ in

their authority-specific scores, the group to which they belong, and their preferences over

the authorities, �. We index agents by their type θ = (s,m,�) ∈ [0, 1]|C| ×M×R = Θ,

where R is set of all complete, transitive, and strict preference relations over C such that c0

is less preferred than all c ∈ C̄. For each type θ, sc(θ) denotes the score of θ at authority c

and m(θ) denotes the group of θ. From now, to economize on notation, we suppress indexing

states by ω ∈ Ω and let the measure of types be F , with density f .19 We assume that f has

full support over Θ (i.e., f > 0) and that F (Θ) is less than the capacity of c0 and greater

than the capacity of C̄.
Each authority has preferences over the agents they are assigned of the form introduced

19Formally, this density is given by f(s,m,�) = ∂
∂sF (s,m,�).
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in the previous section:

ξc(s̄hc , xc) = gc

(
s̄hc +

∑
m∈M

um,c(xm,c)

)
(17)

where the extent to which they care about risk gc, scores hc, and diversity {um,c}m∈M are

potentially specific to each authority.

A matching is a function µ : C ∪ Θ → 2Θ ∪ C where µ(θ) ∈ C is the authority any type

θ is assigned and µ(c) ⊆ Θ is the set of agents assigned to authority c.20 Given a matching

µ, s̄hc,c(µ) and xc(µ) = {xm,c(µ)}m∈M denote the score indices and measures of agents from

different groups matched to c at µ. We say that c prefers µ to µ′, which we denote by

µ �c µ′, if ξc(s̄hc,c(µ), xc(µ)) > ξc(s̄hc,c(µ
′), xc(µ

′)).

Definition 5. A matching µ is a cutoff matching if there exist cutoffs S = {Sm,c}m∈M,c∈C

such that µ(θ) = c if (i) sc(θ) ≥ Sm(θ),c and (ii) for all c′ with c′ �θ c, sc′(θ) < Sm(θ),c′.

Given S, the demand of an agent θ is their favorite authority among those for which they

clear the cutoff:

Dθ(S) = {c : sc(θ) ≥ Sm(θ),c and c �θ c′ for all c′ with sc′(θ) ≥ Sm(θ),c′)} (18)

The aggregate demand for authority c is the set of agents who demand it Dc(S) = {θ :

Dθ(S) = c}, while D̃c(S−c) = Dc((0, . . . , 0), S−c) returns the set of all agents who would

demand c if offered admission admission when other authorities’ cutoffs are S−c.

4.2 Characterization of Stable Allocations

We first characterize the set of stable allocations. Our context presents two challenges in

this regard. First, the priorities which are typically used to define stability are not primitives

of our model. Therefore, to define stability, we will use the preferences of the authorities

induced by Equation 17. Second, unlike discrete models, a single agent does affect the

preferences of an authority. Therefore, we need to consider a positive mass of agents to

define blocking.

For each matching µ, authority c 6= c0, and two sets of agents Θ̃ and Θ̂, we let µ̂(Θ̂,Θ̃,c,µ)

denote the matching that maps Θ̂ to c and Θ̃ to c0 and otherwise coincides with µ.21 A set of

20The mathematical definition of a matching for the continuum economy we study follows Azevedo and
Leshno (2016) and requires that µ satisfies the following four properties: (i) for all θ ∈ Θ, µ(θ) ∈ C; (ii) for
all c ∈ C, µ(c) ⊆ Θ is measurable and F (µ(c)) ≤ qc; (iii) c = µ(θ) iff θ ∈ µ(c); (iv) (open on the right) for
any c ∈ C, the set {θ ∈ Θ : c �θ µ(θ)} is open.

21Formally,

µ̂(Θ̂,Θ̃,c,µ)(θ) =


c0 if θ ∈ Θ̃

c if θ ∈ Θ̂

µ(θ) otherwise

(19)
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agents Θ̂ blocks matching µ at authority c by Θ̃ if (i) for all θ ∈ Θ̂, c �θ µ(θ), (ii) Θ̃ ⊆ µ(c),

(iii) F (Θ̃) = F (Θ̂), and (iv) µ̂(Θ̂,Θ̃,c,µ) �c µ. A matching µ is not blocked if there does not

exist such a (Θ̂, Θ̃, c). A matching µ satisfies within-group fairness if for all θ, θ′ ∈ Θ such

that m(θ′) = m(θ) and sµ(θ)(θ
′) > sµ(θ)(θ), it holds that µ(θ′) �θ′ µ(θ).22 A matching µ is

stable if it satisfies within-group fairness, is not blocked, and all non-dummy authorities fill

their capacity. The following result establishes that there exists a unique stable matching

and that this is a cutoff matching.

Theorem 3. There is a unique stable matching. This matching is a cutoff matching.

This result extends existing results on the uniqueness of stable allocations in continuum

economies (see Theorem 1.1 of Azevedo and Leshno, 2016) to our setting, in which the

preferences of authorities are not exogenously fixed and rather depend on the composition

of the admitted agents. The stable allocation is characterized by cutoffs S, where each agent

θ is matched to Dθ(S).

To gain intuition for this result, first imagine that there is only one group of agents

|M| = 1, so that authorities’ preferences are determined by the scores of the agents. Given

a set of cutoffs S−c, a cutoff tc clears the market for c if F (Dc(tc, S−c)) = qc. When |M| = 1,

for a given S−c, there is a unique tc that clears the market since a smaller cutoff will exceed

the capacity while a larger one will leave a positive measure of the capacity empty. Define

T = {Tc}c∈C, where Tc(S) is the function that maps each S to the market-clearing cutoff

tc under S−c. The result then follows from (i) showing the fixed points of T correspond

to market-clearing cutoffs of stable matchings, (ii) establishing that T is monotone, (iii)

applying Tarski’s fixed point theorem to show that the set of market-clearing cutoffs is a

lattice, and (iv) showing that there can only be one market-clearing cutoff as, if there were

two, one would strictly exceed the capacities of at least one authority.

When |M| > 1, there is a potential continuum of cutoffs that would clear the market for

authority c. A selection from this set is provided by the cutoffs induced by the optimal APM,

A∗m,c(ym, s) ≡ h−1
c (hc(s) + u′m,c(ym)). We show that the APM cutoffs are unique among the

market-clearing cutoffs in being compatible with stability. This is because, for any other t′c,

there is a set Θ̂ of agents (with positive measure) who have scores lower than the cutoff for

their group and a set Θ̃ of agents (with positive measure) who have scores higher than the

cutoff for their group, but the authority is strictly better off by admitting Θ̂ and rejecting

Θ̃. We define Tc(S) as the market-clearing cutoffs induced by the optimal APM, show that

22Within-group fairness simply requires an authority not to reject a agent if it is admitting a agent from
the same group with lower score. Under our assumption that authorities prefer higher scores (hc is strictly
increasing), within-group fairness is satisfied if there is no blocking in discrete models.
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the fixed points of Tc correspond to market-clearing cutoffs of stable matchings, and follow

the same steps as above to demonstrate uniqueness.

This hints at a connection between the stable allocation and the allocation induced by

all authorities pursuing the optimal APM, which we now make explicit. The demand set of

c at µ, Dc(µ), is the set of agents who prefer c to their allocation under µ. A mechanism is

consistent with stability if for all F with stable matching µF , it chooses µF (c) from Dc(µF ).

In other words, evaluated at the set of agents who demand an authority, this mechanism

chooses the set of agents with which the authority is already matched. Moreover, we say that

a mechanism φ is equivalent to φ′ if it chooses the same agents under all full support measures.

We now establish that single-authority-optimal APMs (and equivalent mechanisms) comprise

the full set of mechanisms that are consistent with stability.

Theorem 4. A mechanism φ is consistent with stability if and only if it is equivalent to A∗c.

Thus, not only is the optimal APM A∗ inherent to the structure of stable allocations, but

it also characterizes stability in this setting in the sense that any deviation from A∗ would

result in a violation of stability.

4.3 APM Are Dominant Under Decentralized Admissions

To study which mechanisms are optimal under decentralized admissions, we now consider

a setting in which the agents apply sequentially to the authorities, who then decide which

agents to admit. We index the stage of the game by t ∈ T = {1, . . . , |C| − 1}. Each stage

corresponds to a (non-dummy) authority I(t), where I : T → T . At each stage t, any

unmatched agents choose whether to apply to authority I(t). Given the set of applicants,

authority I(t) chooses to admit a subset of these agents, who are then matched to the

authority. Given this, histories are indexed by the path of the measure of agents who have

not yet matched, ht−1 = (F, F1, . . . , Ft−1) ∈ Ht−1. Given each history ht−1 and set of

applicants ΘA
c ⊆ Θ, a strategy for an authority returns a set of agents ΘG

c ⊆ Θ whom they

will admit such that ΘG
c ⊆ ΘA

c and Ft(Θ
G
c ) ≤ qc for each time at which they could move

t ∈ T , ac,t : Ht−1 × P(Θ) → P(Θ), where P(Θ) is the power set over Θ.23 A strategy for

an agent returns a choice of whether to apply to authorities at each history and time for all

agent types θ ∈ Θ, σθ,t : Ht−1 → [0, 1].

Within this context, our notion of equilibrium is that of subgame perfect equilibrium:

23Formally, so that Ft(Θ
G
c ) is well defined, we require that authorities’ strategies be measurable in the

Borel sigma algebra over Θ.
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Definition 6 (Equilibrium). A strategy profile Σ = {{ac,t}c∈C̄, {σθ,t}θ∈Θ}t∈T is a subgame

perfect equilibrium if ac,t maximizes authority utility given Σ for all c ∈ C̄ and t ∈ T and σθ,t

is maximal according to agent preferences for all θ ∈ Θ and t ∈ T .

We moreover say that a strategy ac̃,t for an authority c̃ at time t is dominant if it

maximizes authority utility regardless of the strategies of all other authorities and agents,

{{ac,t}c∈C̄\{c̃}, {σθ,t}θ∈Θ}t∈T , and the order in which authorities admit agents, I. Moreover, an

equilibrium Σ is in dominant strategies if ac,t is dominant for all c ∈ C̄ and t ∈ T . We denote

the unique probabilistic allocation of agents to authorities induced by Σ as µΣ : Θ→ ∆(C).
A probabilistic allocation µΣ is deterministic if µΣ(θ) is a Dirac measure on some authority

c ∈ C for all θ ∈ Θ. A deterministic allocation µΣ corresponds to a matching µ if µΣ(θ) is a

Dirac measure on µ(θ) for all θ ∈ Θ.

We now establish that the single-authority optimal APM characterizes dominance.

Theorem 5. A mechanism implements a dominant strategy for an authority if and only if

it implements essentially the same allocations as A∗c.

The intuition behind this result is that each authority takes as given the set of agents

that will accept it. Thus, given this measure of agents, they can do no better than to employ

the same APM that a single authority would, which is A∗c by Theorem 1.

Theorem 5 provides a powerful rationale for focusing on APMs in decentralized markets

at both positive and normative levels. Normatively, this result allows an analyst to advise

an authority regarding how it should conduct its admissions. This is important because

any policy that does not coincide with the APM we derive — such as the popular priority

and quota mechanisms outside of the cases delimited by Theorem 2 — will disadvantage

an authority. Positively, this result allows a sharp prediction that the equilibrium matching

between agents and authorities will be the unique stable matching (as per Theorem 3):

Proposition 4. For all equilibria Σ∗ where authorities use A∗, the allocation µΣ∗ is deter-

ministic and corresponds to the unique stable matching of this economy.

The intuition is that if an equilibrium matching under A∗ was not the unique stable

matching, then it must be that some agents are applying suboptimally and failing to select

the most preferred authority that they can attend, which contradicts that the outcome is

consistent with equilibrium. Proposition 4 also shows that the allocation implemented in

the dominant strategy equilibrium is the same for all possible orderings of authorities, I.

4.4 Inefficiency of APM and an Efficient Mechanism

In Appendix D, we study the efficiency properties (from the perspective of authorities) of

APM. We find that decentralized outcomes when all authorities use APM are generally
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inefficient (Proposition 5). This is because authorities do not internalize the “pecuniary ex-

ternalities” they generate by over-admitting agents that have a preference for them but that

the other authorities value more. To remedy this, we propose a centralized allocation mech-

anism, an Adaptive Priority Mechanism with Quotas (APM-Q). An APM-Q first constructs

a fictitious aggregate authority, decides the aggregate levels of admissions of each group

according to an optimal APM, and then allocates these groups across authorities according

to optimally set quotas. We show that an optimally set APM-Q yields efficient outcomes

(Theorem 6). Intuitively, this mechanism fixes the pecuniary externalities by creating a

pseudo-market in which each group has a “price” and authorities are assigned agents only if

they would be willing to “pay” for them.

5 Benchmarking the Quantitative Gains from APM

We have so far shown theoretically that APM outperform conventional priority and quota

mechanisms. In this section, we attempt to benchmark the magnitude of the gains from im-

plementing APM relative to the reserve system employed by Chicago Public Schools (CPS).

To do this, we use application and admission data from CPS for the 2013-2017 academic

years. Estimating preference parameters to best rationalize the pursued reserve policy, we

find that the gains from using the optimal APM are equivalent to removing 37.5% of the

loss to CPS’ payoffs from failing to admit a diverse class of students. Our analysis therefore

suggests that the gains from APM are considerable.

5.1 Institutional Detail on Chicago Public Schools

We first describe the institutional context of CPS. Under current policy, CPS admits students

to its selective exam schools based on two criteria. First, CPS ranks students according to

a score which combines the results of a specialized entrance exam, prior standardized test

scores, and grades in prior coursework. This composite score ranges from 0 to 900 and higher-

scoring students are admitted before lower-scoring ones, reflecting CPS’s desire to allocate

seats in exam schools to the students with the best academic standing. In our model, these

are the students’ scores. Second, CPS divides the census tracts in the city into four tiers

based on socioeconomic characteristics.24 Tier 1 tracts are the most disadvantaged, while

24Concretely, 800 census tracts are divided into four tiers based on six characteristics of each census tract:
(i) median family income, (ii) percentage of single-parent households, (iii) percentage of households where
English is not the first language, (iv) percentage of homes occupied by the homeowner, (v) adult educational
attainment, and (vi) average Illinois Standards Achievement Test scores for attendance-area schools. These
characteristics are then combined to construct the socioeconomic score for the tract. Finally, the tracts are
ranked according to socioeconomic scores and partitioned into 4 tiers with approximately the same number
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Table 1: Admissions Cutoff Scores for Payton

Cutoff Score 2013 2014 2015 2016 2017

Tier 1 801 838 784 769 771
Tier 2 845 840 831 826 846
Tier 3 871 883 877 853 875
Tier 4 892 896 891 890 894

Note: The table reports the score of the lowest-scoring student that was admitted to Payton in
each of the four tiers and five years.

Tier 4 tracts are the most advantaged. This is reflected in the composite scores of students

from Tier 1, who represent 25% of the city’s population but comprise relatively few of the

high-scoring students (Ellison and Pathak, 2021). As a result, Tier 1 students would have a

very small share in the city’s top exam schools without affirmative action. To ensure more

equal representation across socioeconomic status in these schools, between 2013-2017 CPS

implemented a quota policy that reserves 17.5% of the seats for each tier, yielding a total of

70% reserve seats and 30% merit slots that are open to students from all tiers. CPS allocates

the seats by first assigning the highest-scoring students (regardless of their tier) to the merit

slots and then the highest-scoring students from each tier to the 17.5% reserve seats.

We focus on the most selective CPS school, Walter Payton College Preparatory High

School (Payton), which has the highest cutoffs for each tier in each year in our data and

would have very few tier 1 students without affirmative action.25 Table 1 presents the cutoff

scores of each tier (i.e., the composite score of the last admitted student from each tier).

We make two observations. First, the cutoff students from less advantageous tiers face

is lower than the cutoff for students from more advantageous tiers. Therefore, CPS has a

revealed preference (and not merely a stated preference) for a diverse student body. Second,

cutoff scores vary across years. This implies that the distribution of applicant characteristics

varies from year to year. Given this uncertainty and the fact that CPS uses a policy that

processes quotas after open slots, we know by Theorem 2 that CPS’ baseline policy cannot

be rationalized as optimal (even if they are extremely risk-averse). Nevertheless, it is always

possible that the gains from APM could be small.

of school-age children. See Ellison and Pathak (2021) for a more detailed account of the CPS system.
25This approach follows the analysis in Ellison and Pathak (2021), who focus on the two most competitive

schools, Northside College Preparatory High School (Northside) alongside Payton. In the years we study,
the cutoff scores for Northside are below some other schools frequently, which is why we restrict attention
to Payton.
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5.2 Preferences and Estimation Methodology

We perform our analysis in two steps: establishing a parametric framework for evaluating

welfare gains and losses and then estimating its parameters.

Preferences. We assume a parametric form for CPS’s preferences to evaluate the gains

from APM. In particular, we impose that the preferences of CPS over the scores and diversity

of the student body are represented by the following parametric utility function:

ξ(s̄, x; β, γ) = s̄+
4∑
t=1

β|xt − 0.25|γ (20)

where s̄ is the average score of admitted students, xt is the percentage of tier t students.

Motivated by CPS’ desire to allocate the highest-scoring students, ξ is increasing in s̄. To

model the diversity preferences of CPS, we assume that CPS loses as the gap from equal

representation in each tier increases. We do this through the functional form β|xt − 0.25|γ.
The parameters β and γ index the slope and curvature of utility in losses from unequal

representation and are the two free parameters of our framework. To probe robustness to

this functional form assumption, in Appendix E.2 we consider two other parametric utility

functions that estimate separate coefficients for underrepresented and overrepresented tiers

and only consider losses from underrepresented tiers.

Estimation. We estimate β and γ to best rationalize the choice of 17.5% reserves for each

tier as optimal. We believe this to be a reasonable approach, as the size of the reserves is

an important issue that is decided only after much deliberation.26 Moreover, CPS has used

the size of the reserves as a policy tool, increasing them from 15% to 17.5% in 2012 and is

currently deliberating another change that would further boost the representation of tier 1

and tier 2 students (Chicago Public Schools, 2022).

Given our functional form, the optimality of the chosen reserve sizes yields moment

conditions that we use to estimate the parameters β and γ. Formally, we index reserve

mechanisms by the reserve sizes of the four socioeconomic tiers r = (r1, r2, r3, r4). We let

s̄(r, y) and x(r, y) denote the average scores and tier percentages that would be obtained in

year y, with distribution Fy, under reserve policy r. The payoff of the policymaker under

reserve policy r is given by Ξ(r,Λ; β, γ), as per Equation 7:

Ξ(r,Λ; β, γ) = EΛ[ξ(s̄(r, y), x(r, y); β, γ)] (21)

26These points are emphasized in Dur, Pathak, and Sönmez (2020): “This change was made at the urging
of a Blue Ribbon Commission (BRC, 2011), which examined the racial makeup of schools under the 60%
reservation compared to the old Chicago’s old system of racial quotas. They advocated for the increase in
tier reservations on the basis it would be “improving the chances for students in neighborhoods with low
performing schools, increasing diversity, and complementing the other variables.”
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where the expectation is taken over distributions of agents’ characteristics Fy under the

subjective probability measure Λ. Define the expected marginal benefit of increasing reserve

i and decreasing reserve j as:

Gij(r,Λ; β, γ) =
∂

∂ri
Ξ(r,Λ; β, γ)− ∂

∂rj
Ξ(r,Λ; β, γ) (22)

Any (interior) optimal reserve policy r∗ must equate the expected marginal benefit of increas-

ing reserve i and decreasing reserve j at r∗ to zero for all (i, j) pairs, i.e., Gij(r
∗,Λ; β, γ) = 0

for all {i, j} ⊂ {1, 2, 3, 4} such that j > i. These six first-order conditions yield six moments.

We take empirical analogs of the theoretical moments and estimate preference parame-

ters by minimizing the sum of squared deviations of these moments from zero. We take

CPS’ pursued reserve policy as optimal, r̂∗ = (0.175, 0.175, 0.175, 0.175). We estimate

the empirical joint distribution of students’ scores and tiers in CPS in each year F̂y for

y ∈ {2013, 2014, 2015, 2016, 2017} and estimate Λ̂ as a distribution that places equal prob-

ability on each of these five measured distributions. We plug these sample estimates into

the theoretical moment functions. This yields six empirical moment functions that depend

only on the preference parameters, Gij(r̂
∗, Λ̂; β, γ). Motivated by the theoretical necessity of

Gij(r
∗,Λ; β, γ) = 0, we estimate the preference parameters by minimizing the sum of squared

deviations of the empirical moments from zero:

(β∗, γ∗) ∈ arg min
β,γ

4∑
i=1

∑
j>i

Gij(r̂
∗, Λ̂; β, γ)2 (23)

Performing this estimation yields estimated parameter values of β∗ = −209.5 and γ∗ = 2.11.

5.3 The Estimated Gains from APM

We now use our estimated model to quantify the welfare gains from using APM. To do this,

we compare the empirical payoff Ξ(φ, Λ̂, β∗, γ∗) under two mechanisms: the pursued quota

policy, r∗, and the optimal APM from Theorem 1, A∗. In Figure 4, we illustrate how the

estimated optimal APM changes students’ scores to arrive at their ultimate priorities. In

accordance with the preferences we have assumed, students receive a score boost when their

tier is underrepresented and a score penalty when their tier is overrepresented. As we found

γ∗ = 2.11, the estimated diversity preference is very close to quadratic. Thus, the optimal

APM is very close to linear. From Theorems 1 and 2, we know that this APM achieves the

first-best allocation in each year while the implemented quota policy does not. However, our

theorems do not guarantee that the gains from APM are economically meaningful.

The empirical payoff under APM is 876.9, while it is 874.8 under the CPS reserve policy.

Thus, the gains from APM are equivalent to increasing average scores by 2.1, holding diversity
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Figure 4: The Estimated Optimal APM
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Note: This figure plots the change in a student’s score when fraction y of students in their own tier
has already been admitted under the estimated optimal APM, A∗. At y = 0.25 (the vertical dashed
black line), the score in unchanged. For y < 0.25, students receive a score boost. For y > 0.25,
students receive a score penalty. The range of the x-axis, [0.1, 0.45], is chosen to cover the full range
of fractions of admitted students under both the optimal and the CPS reserve policy from all tiers
in all years of our sample (see Figure 5).

fixed. To benchmark the size of the gains, we require units in which they can be meaningfully

expressed. To this end, we define the loss from underrepresentation as the payoff lost by CPS

under its baseline policy from not admitting a fully balanced class, while holding fixed the

average score of the class. This is equal to 5.6 points under our estimated parameters. Thus,

the gains from APM are equal to 37.5% of the loss from underrepresentation incurred under

the CPS policy.27 To contextualize the magnitude of this improvement, we can compare the

gains from switching to the optimal APM to the gains from the 2012 (the year before our

sample) CPS reform, which increased the size of all reserves from 15% to 17.5%. Under the

estimated preferences, the empirical payoff under the 15% reserve rule is 873.9, and so the

gains from the reform are equivalent to increasing average scores by 0.9. Thus, the gains

from switching to the optimal APM are 2.3 times larger than the gains from this recent

reform.

These estimates suggest that the gains from APM are economically meaningful. These

gains stem from the variation across years in the joint distribution of student scores and

tiers. This can be seen in Table 1, which shows the variability in the scores of the marginally

admitted students from tiers 1, 2 and 3. More systematically, we visualize the difference

in outcomes under CPS’ reserves and the optimal APM by plotting the average scores and

27This is equivalent to increasing the percentage of students from tier 1 from 0.179 to 0.21 and decreasing
the percentage of students from tier 4 from 0.407 to 0.378. This corresponds to swapping 8.7 students from
the most overrepresented group (tier 4) for the most underrepresented group (tier 1) each year.
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Figure 5: Comparing Admissions under the Optimal APM and the CPS Policy
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Note: Each point corresponds to one of the four tiers of students in one of the five years under
either the optimal APM or the CPS policy. The x-axis corresponds to the average score of those
admitted from that tier in that year under that policy. The y-axis corresponds to the fraction of
admitted students from that tier in that tier under that policy.

fraction admitted for each tier for each year under both mechanisms in Figure 5. There

are two main differences between the allocations. First, the APM allocates systematically

fewer tier 1 and tier 4 students and more tier 3 students. Second, the APM admits a greater

fraction of students from each tier (especially tiers 1 and 3) in the years in which that tier

scores well. This positive selection generates the welfare gains.

Robustness. We now explore the robustness of APM to the three core assumptions of

our analysis: (i) that CPS has the correct beliefs about the distribution of distributions of

students, (ii) that CPS has preferences that lie in the assumed parametric family, and (iii)

that CPS separately optimizes the sizes of all four tiers.

Our baseline analysis took the beliefs of CPS to be the true empirical distribution of

student distributions over years. To test robustness to this assumption, we take Λ̂ as a Dirac

distribution on the realized distribution for each of the five years of our data and re-estimate

the preference parameters. In Figure 6, we plot the difference in welfare under the optimal

APM and CPS reserve policies over the full range of these re-estimated parameters (i.e., we

take the minimum and maximum of the estimated parameters across years as the ranges

for the axes). We find that the gains from APM range from 2.0 to 3.5, while our baseline

estimate was 2.1. Thus, the point estimate of our welfare gains from APM appears to be

conservative by this metric.

To gauge robustness to the functional form we have assumed for CPS’ preferences, in

Appendix E.2, we estimate two different parametric specifications of utility. First, we con-
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Figure 6: Robustness of the Gains from APM
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Note: This chart plots the difference in empirical payoffs from the optimal APM and CPS reserve
policy under alternative parameter values, with the shaded colors corresponding to the numerical
value of the gains from APM, ranging from 2.0 to 3.5. The black ‘+’ indicates our baseline parameter
values. The ranges for the axes are obtained by estimating β and γ separately for each year of our
data and separately taking the minimum and maximum estimated values of each set of estimated
parameters.

sider a utility function that includes a loss term only for underrepresented tiers (and does

not penalize overrepresentation of any tier). Second, we allow for CPS to care differentially

about underrepresentation and overrepresentation by considering a utility function with sep-

arate coefficients for underrepresented and overrepresented tiers. We find that under these

specifications, the improvement from APM corresponds to 9.7% and 8.7% of the loss from

underrepresentation, which is attenuated relative to our baseline, but remains considerable.

To study the robustness of our findings to the assumption that CPS separately optimizes

the size of all four tiers, in Appendix E.1 we consider a setting where CPS sets a single reserve

size for all tiers. As we now have only one moment condition, we vary γ over the interval

[1,10], estimate β∗(γ) as the exact solution to the moment condition, and compute the gains

from APM as a function of γ. The minimum gain from APM over the estimated range is

1.98 points, which corresponds to 26.2% of the loss from underrepresentation under that

parameterization. This is slightly smaller than our baseline estimate but still considerable.

Limitations. Finally, we state some limitations of our analysis. First, even though we

argue that our functional form assumptions are reasonable and parsimonious in this set-

ting, there are possibly many other parametric utility functions that might represent the

preferences of CPS. Unfortunately, with the available data, richer methods of preference

estimation that allow for higher dimensionality of preference parameters are severely lim-

ited. This is because admissions rules are only set once and we can therefore use only six
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first-order conditions. Richer data in which we observe choices of students from different

applicant sets (either in practice or in hypothetical choice settings) would allow for a more

detailed analysis. Second, one of the main aims of the tier system employed by CPS is to

increase racial diversity in the prestigious exam schools. Indeed, the pursued tier system is a

race-neutral alternative that replaced the previous race-based system following two Supreme

Court Rulings in 2003 and 2007 (see Ellison and Pathak, 2021, for a summary). Because of

this, CPS uses tiers based on socioeconomic status instead of race and so we estimate their

preferences over tiers. Of course, if admission rules could depend on race, then one could

perform a similar analysis in which APM simply prioritize based on race rather than tier.

6 Conclusion

Motivated by the use of priority and quota policies in resource allocation settings with

diversity concerns, we consider an authority that has separable preferences over scores and

diversity. We introduce Adaptive Priority Mechanisms (APM) and characterize an APM

that is both optimal and can be specified solely in terms of the preferences of the authority.

We study the priority and quota policies that are used in practice and show that they

are optimal if and only if the authority is either risk-neutral or extremely risk-averse over

diversity. Analyzing a setting with multiple authorities that dynamically admit agents, we

show that the optimal APM is a dominant strategy. Thus, one could potentially advise

authorities to follow an optimal APM with confidence (under our maintained assumptions

on preferences) that they could do no better. Moreover, all authorities following the optimal

APM implements the unique stable allocation.

Our analysis has potential implications for improving the design of real-world allocation

mechanisms. First, we show that while both priorities and quotas can be better than one

another (depending on the risk preferences of the authority), they are generally suboptimal.

Second, we show how to improve upon these mechanisms using APM that harness the

strengths of these policies: APM benefit both from the guarantee effect of quotas in ensuring

certain levels of admissions from various groups and the positive selection effect of priorities

in expanding affirmative action when it is least costly. Our quantitative analysis using CPS

data suggests that the use of APM can yield considerable welfare gains over the status quo.

We conclude that APM may have practical utility in delivering more desirable allocations

of resources. Moreover, APM could be applied in many settings, including the allocation of

seats at schools, places at universities, and medical resources to patients.
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Appendices

A Omitted Proofs of Theorems

A.1 Proof of Theorem 1

Proof. We characterize the optimal allocation for each ω ∈ Ω and show that the claimed

adaptive priority mechanism implements the same allocation. Fix an ω ∈ Ω and suppress

the dependence of Fω and fω thereon, and define the utility index of a score as s̃ = h(s) with

induced densities over s̃ given by f̃m for all m ∈M. Let the measure of agents from any group

m ∈ M that is allocated the resource be xm ∈ [0, x̄m] where x̄m =
∫ h(1)

h(0)
f̃m(s̃)ds̃. Observe

that, conditional on fixing the measures of agents from each group that are allocated the

resource x = {xm}m∈M, there is a unique optimal allocation (i.e., ξ-maximal µ up to measure

zero transformations). In particular, as g and h are continuous and strictly increasing, the

optimal allocation conditional on x satisfies µ∗(s̃, m;x) = 1 ⇐⇒ s̃ ≥ s̃m(xm) for some

thresholds {s̃m(xm)}m∈M that solve:∫ h(1)

s̃m(xm)

f̃m(s̃)ds̃ = xm (24)

We can then express the problem of choosing the optimal x = {xm}m∈M as:

max
xm∈[0,x̄m], ∀m∈M

∑
m∈M

∫ h(1)

s̃m(xm)

s̃f̃m(s̃)ds̃+
∑
m∈M

um(xm) s.t.
∑
m∈M

xm ≤ q (25)

where a solution exists by compactness of the constraint sets and continuity of the objective.

We can derive necessary and sufficient conditions on the solution(s) to this problem by

considering the Lagrangian:

L(x, λ, κ, κ) =
∑
m∈M

∫ h(1)

s̃m(xm)

s̃f̃m(s̃)ds̃+
∑
m∈M

um(xm)

+ λ

(
q −

∑
m∈M

xm

)
+
∑
m∈M

κm(x̄m − xm) +
∑
m∈M

κmxm

(26)

The first-order necessary conditions to this program are given by:

∂L
∂xm

= −s̃′m(xm)s̃m(xm)f̃m(s̃m(xm)) + u′m(xm)− λ− κm + κm = 0 (27)

λ
∂L
∂λ

= λ

(
q −

∑
m∈M

xm

)
= 0 (28)

κm
∂L
∂κm

= κm(x̄m − xm) = 0 (29)
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κm
∂L
∂κm

= κmxm = 0 (30)

for all m ∈M. By implicitly differentiating Equation 24, we obtain that:

− s̃′m(xm)f̃m(s̃m(xm)) = 1 (31)

Thus, we can simplify Equation 27 to:

∂L
∂xm

= s̃m(xm) + u′m(xm)− λ− κm + κm = 0 (32)

Observe that all constraints are linear. Thus, if the objective function is strictly concave,

the first-order conditions are also sufficient. Observe by Equation 31 that s̃m(xm) is a

strictly decreasing function of xm, and all cross-partial derivatives are zero. Therefore, the

first summation is strictly concave. Moreover u′m is a decreasing function of xm by virtue of

the assumption that um is concave for all m ∈ M. Then the second summation is concave.

Thus, the objective function is strictly concave and the optimal allocation is unique.

Thus, to verify that our claimed adaptive priority mechanism is a first-best mechanism, it

suffices to show that the allocation it implements satisfies Equations 27 to 30. The adaptive

priority mechanism Am(ym, s) = h−1 (h(s) + u′m(ym))) in the transformed score space yields

transformed scores h (Am(ym, s)) = s̃+u′m(ym). Define xm as the admitted measure of agents

from group m under this mechanism. Agents in group m ∈ M are allocated the resource if

and only if s̃+ u′m(xm) ≥ sC for some threshold sC that solves:∑
m∈M

∫ h(1)

max{min{sC−u′m(xm),h(1)},h(0)}
f̃m(s̃)ds̃ = q (33)

We can therefore partition M into three sets that are uniquely defined: (i) interior MI =

{m ∈ M|sC − u′m(xm) ∈ (h(0), h(1))}; (ii) no allocation M0 = {m ∈ M|sC − u′m(xm) ≥
h(1)}; (iii) full allocation MI = {m ∈ M|sC − u′m(xm) ≤ h(0)}. For all m ∈ M0, we

implement xm = 0. For all m ∈MI , we implement xm = x̄m. For all m ∈MI , we implement

xm ∈ (0, x̄m). For any m ∈MI , the allocation threshold is s̃m(xm) = sC − u′m(xm). For any

m ∈M0, the allocation threshold is h(1). For any m ∈MI , the allocation threshold is h(0).

We now verify that this outcome satisfies the established necessary and sufficient condi-

tions. For all m ∈MI , by the complementary slackness conditions we have that κm = κm =

0. Substituting the above into Equation 27 for all m ∈MI we obtain that:

sC − λ = 0 (34)

which is satisfied for λ = sC . As q =
∑

m∈M xm, the complementary slackness condition for

λ is then satisfied. For all m ∈ M0, by complementary slackness we have that κm = 0 and
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Equation 27 is satisfied by:

κm = λ− h(1)− u′m(0) (35)

For all m ∈ MI , by complementary slackness we have that κm = 0 and Equation 27 is

satisfied by:

κm = h(0) + u′m(x̄m)− λ (36)

This completes the proof of first-best optimality of A∗. Moreover, as the optimal allocation

is unique for all ω, any allocation that differs from the allocation implemented by the optimal

APM at any ω would not be first-best optimal. Therefore, any first-best-optimal mechanism

must implement essentially the same allocation as A∗.

A.2 Proof of Theorem 2

Proof. First, we prove the if parts of the results. Part (i): When um is linear, u′m is constant

and the first-best optimal adaptive priority mechanism is a priority mechanism P (s,m) =

h−1(h(s)+u′m). Part (ii): When ũ′m(xm) ≥ k for xm ≤ xtar
m and ũ′m(xm) = 0 for xm > xtar

m and∑
m∈M xtar

m < q, observe that the optimal mechanism admits xm ≥ xtar
m for all m ∈M in all

states of the world, but conditional on xm ≥ xtar
m for all m ∈ M admits the highest-scoring

set of agents. A quota Qm = xtar
m and QR = q−

∑
m∈M xtar

m , with D(R) = |M|+1 implements

this allocation and is first-best optimal for any authority that is extremely risk-averse.

Second, we prove the only if parts of the results. Part (i): Assume the utility functions

are not linear and let m denote a group where u′m is not constant in [0, q]. We say that a

state ω has full support if fw has full support. A state ω has full support in m and n if

fw(·,m) > 0 and fw(·, n) > 0 for some m and n and positive measures of only m and n. Let

ω be a state that has full support in m and n. Moreover, assume both groups have a measure

q of agents. We first establish that in any optimal allocation, agents from both groups are

allocated the resource.

Claim 1. If preferences are non-trivial, then the optimal allocation has xn, xm > 0.

Proof. Toward a contradiction, suppose without loss of generality that xn = 0. This implies

that xm = q. By the necessary first-order condition from Theorem 1 (combing Equations 27

and 30), we have that:

u′m(q) + h(0) = u′n(0) + h(1) + κn ≥ u′n(0) + h(1) (37)

where the inequality follows as κn ≥ 0. Thus, we have that:

u′m(q)− u′n(0) ≥ h(1)− h(0) > u′m(q)− u′n(0) (38)
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where the first inequality follows by rearranging Equation 37 and the second follows by the

definition of non-triviality of preferences. This is a contradiction, thus xn, xm > 0 in any

optimal allocation.

We now establish an equation relating xn and xm that will be useful in the steps to come.

Claim 2. Let ω have full support in m and n, µ denote a cutoff matching with cutoffs sm

and sn. Let xm and xn denote the measures of agents who are allocated the object at µ. µ is

optimal if and only if u′m(xm) + h(sm) = u′n(xn) + h(sn) and xn + xm = q.

Proof. By the necessary and sufficient first-order conditions from Theorem 1, we again have

that:

u′m(xm) + h(sm)− κm + κm = u′n(xn) + h(sn)− κn + κn (39)

By Claim 1, we have xm, xn > 0. Thus, by the complementary slackness conditions (Equa-

tions 29 and 30), we have that κm = κm = κn = κn = 0. Thus, we obtain:

u′m(xm) + h(sm) = u′n(xn) + h(sn) (40)

together with xn + xm = q, we have characterized the optimal allocation as claimed.

Continue to let xm and xn denote the measures of group m and n agents at the optimal

allocation under ω, and sm and sn denote the cutoff scores for admission. There are now

two cases to consider: (i) u′m(xm) and u′n(xn) are locally constant. (ii) u′m(xm) or u′n(xn)

are not locally constant. If we are in case (i), we will construct an ω′ with a unique optimal

allocation x′m and x′n where u′m(x′m) or u′n(x′n) is not locally constant, and then show jointly

how we arrive at a contradiction in both cases (i) and (ii).

To this end, suppose that we are in case (i). Let x∗m and x∗n denote the measures that

are closest to xm and xn such that u′m(xm) and u′n(xn) are not locally constant, i.e.,:

x∗k = arg min
x′k

{
|xk − x′k|

∣∣∣u′k(xk) = u′k(x
′
k) and for all ε > 0

either u′k(x
′
k − ε) > u′k(xk) or u′k(x

′
k + ε) > u′k(xk)

} (41)

As u′k is continuous, this minimum is attained and x∗k is well-defined. Without loss of

generality, assume |xm − x∗m| ≤ |xn − x∗n| and define both x̂m = x∗m and x̂n = q − x∗m. We

now construct a state ω′ such that x̂ is optimal:

Claim 3. Define ω′ where Fm(1) − Fm(sm) = x̂m, Fn(1) − Fn(sn) = x̂n and ω′ has full

support in m and n. The allocation that admits the highest-scoring x̂m group m agents and

the highest-scoring x̂n group n agents is the unique optimal allocation.
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Proof. By Claim 2, as x̂m + x̂n = q by construction, x̂ is optimal if and only if Equation 40

holds. To this end, observe that if we admit x̂, then the cutoff scores are the same as under

x as Fm(1)− Fm(sm) = x̂m and Fn(1)− Fn(sn) = x̂n, by construction. Thus, we have that:

u′m(x̂m) + h(sm) = u′m(xm) + h(sm) = u′n(xn) + h(sn) = u′n(x̂n) + h(sn) (42)

where the first equality holds by construction as x̂m = x∗m and u′m(x∗m) = u′m(xm), the second

equality holds by optimality of x, and the third equality holds as |xm−x∗m| ≤ |xn−x∗n|, which

implies that u′n(x̂n) = u′n(x∗n). Thus, Equation 40 holds, and x̂ is optimal, as claimed.

Observe that this construction also applies trivially in case (ii) with x∗m = xm. Thus, using

this construction, we can now study cases (i) and (ii) together. In state ω′, to implement

this optimal allocation, we must have that P (s,m) < P (sn, n) for all but a measure zero

set of s such that s < sm. We will now construct another state ω′′ such that any priority

mechanism with this property is suboptimal.

First, suppose that x∗m ≤ xm and fix some ε ∈ (0, x∗m). Define s̃m as solving the following

equation:

u′m(x̂m − ε) + h(s̃m) = u′n(x̂n + ε) + h(sn) (43)

We then have that:

s̃m = h−1 (h(sn) + u′n(x̂n + ε)− u′m(x̂m − ε)) < h−1 (h(sn) + u′n(x̂n)− u′m(x̂m)) = sm (44)

where the first equality rearranges Equation 43 and the second inequality uses the facts that

u′n(x̂n) ≤ u′n(x̂n + ε) and u′m(x̂m) < u′m(x̂m − ε). We now construct a state ω′′ such that

(x̂m − ε, x̂n + ε) is optimal.

Claim 4. Define ω′′ where 1−Fm(s̃m) = x̂m− ε, 1−Fn(sn) = x̂n + ε with full support in m

and n. The allocation that admits the highest-scoring (x̂m − ε, x̂n + ε) agents is the unique

optimal allocation.

Proof. Following the same steps as Claim 3, and the fact that Equation 43 holds by con-

struction, we have that the claim holds.

Observe that to implement this optimal allocation a priority mechanism must set P (s,m) ≥
P (sn, n) for all but zero measure s > s̃m. However, since s̃m < sm, this contradicts the op-

timality condition for state ω′ that P (s,m) < P (sn, n). This is because for all but measure

zero s ∈ (s̃m, sm), which we have established is non-empty, we have that:

P (s,m) ≥ P (sn, n) > P (s,m) (45)
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which is a contradiction. To complete the proof, we need only consider the case that x∗m > xm.

In this case, we can apply essentially the same steps and the result follows. Concretely,

instead increasing x̂m by ε and following the same steps yields the required contradiction.

We have now constructed three states ω, ω′, ω′′ such that no priority mechanism can be

optimal in each state when the authority is not risk-neural, completing the proof.

Part (ii): Assume that a quota policy is optimal, we now show that the authority’s

preferences must be extremely risk-averse. For each group m ∈ M, let cm ∈ [0, 1] and

cm 6= cn if m 6= n. Let ω be such that the scores of agents from each group m are uniformly

distributed between [cm, cm + ε], where ε is chosen to be small so that there is no overlap

of these supports and each group has measure q agents. Let mω denote the group with

the highest cm at ω. Now, compute the optimal allocation at ω and denote the measure of

admitted agents from each group at the optimal allocation by {x∗m(ω)}m∈M. We first show

that under any optimal quota policy, the level of the quotas must be set equal to the optimal

allocation for all but the highest-scoring group:

Claim 5. If a quota Q attains the optimal allocation, then for each m 6= mω, Qm = x∗m(ω).

Proof. If Qm > x∗m(ω), then we admit xm ≥ Qm > x∗m(ω), which is suboptimal as there is

a unique optimal allocation by Theorem 1. If Qm < x∗m(ω) and m 6= mω, then xm = Qm as

cmω > cm + ε and no agent from group m can claim a merit slot. This is suboptimal. Thus,

Qm = x∗m(ω) for all m 6= mω.

Next, create ω′ by changing the highest-scoring group, i.e., mω 6= mω′ . Let x∗mω(ω′)

denote the measure of admitted agents from group mω under ω′. Applying Claim 5, If Q

attains the optimal allocation, then it must be that Qmω = x∗mω(ω′). Define Q∗m by Q∗m = x∗m

for all m ∈M \ {mω} and Q∗mω = x∗mω(ω′).

Now, we have proved that if Q is an optimal policy, then Qm = Q∗m for all m ∈M\{mω}
and Qmω = Q∗mω . We now establish that merit slots must be processed after any positive

measure quota slots if the merit slots are of positive measure:

Claim 6. If there is a quota policy that attains the first-best, Q, then Qm = Q∗m and either∑
m∈MQ∗m = q, i.e., there are no merit slots (merit slot processing does not matter), or∑
m∈MQ∗m < q and merit slots are processed after any positive measure quota slots.

Proof. We have already proved Qm = Q∗m. If
∑

m∈MQ∗m = q, there are no merit slots and

any processing order yields the same result. If
∑

m∈MQ∗m < q, for a contradiction, assume

merit slots are processed before quota slots for group m and Q∗m > 0. There are two cases,

m 6= mω and m = mω. We start with the first case. Note that there is a cutoff sm for group

m with sm < cm + ε and all agents from group m who score above sm are allocated the
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resource. Create ω′′ by taking measure xm/2 of these agents who are allocated the resource

and give them scores above cmω (the highest-scoring group at ω). The scores of the remaining

xm/2 agents are distributed uniformly at [cm, cm + ε].

We now observe that the optimal allocations at ω and ω′′ are the same. This is because

increasing the scores of already admitted agents does not change the preferences of the

authority of whom to admit. Moreover, the optimal allocation at ω′′ cannot be attained if

the quota slots for group m are processed after the merit slots. This follows as, if merit slots

are processed before quota slots for group m, a strictly positive measure of them would go

to group m agents at ω′′ since now they have a measure of agents with the highest scores,

which violates optimality.

This proves the claim for m 6= mω. To prove the result for m = mω, replicate the above

steps with ω′ where mω is not the highest-scoring group.

We now use these claims to establish that if quotas are first-best optimal, then (u, h)

must agree with (ũ, h̃) on optimal allocations.

Claim 7. The quota first policy with Qm = xtarm maximizes the utility with respect to ũ, h̃.

Proof. This is clear as for ũ, h̃, diversity utility dominates until xtarm and has no effect after.

This proves the result since if there exists a first-best optimal quota policy, then it is

rationalized by (ũ, h̃) with xtarm = Q∗m. Hence, if there is a first-best quota mechanism, the

authority is extremely risk-averse.

A.3 Proof of Theorem 3

Proof. We first prove the following lemma.

Lemma 1. Any stable matching is a cutoff matching.

Proof. Assume that µ is a stable matching. Let Sm,c = infθ{sc(θ) : m(θ) = m,µ(θ) = c}.
Since µ satisfies within-group fairness, for all m and s′ > Sm,c, if m(θ) = m and sc(θ) = s′,

µ(θ) �θ c. Moreover, from part (iv) of the definition of matching, this extends to the

case where s′ = Sm,c. Concretely, suppose that µ(θ) 6= c, c �θ µ(θ) and sc(θ) = Sm,c.

Consider a sequence of types {θk}k∈N with common group m and scores {sc(θk)}k∈N such

that sc(θk) > Sm,c for all k ∈ N and sk(θ)→ Sm,c. Define the set ΘE = {θ ∈ Θ : c � µ(θ)},
which must be open by part (iv) of the definition of a matching. We have that θk 6∈ ΘE for

all k ∈ N but limk→∞ θk ∈ ΘE, which contradicts that ΘE is open. Thus, if µ is stable, then

it is also a cutoff matching.

38



Therefore, to characterize stable matchings, it is enough to characterize cutoffs that

induce a stable matching, which we call stable cutoffs.

Definition 7. A vector S is a market-clearing cutoff if it satisfies the following:

1. Dc(S) ≤ qc for all c.

2. Dc(S) = qc if Sm,c > 0 for some m ∈M.

Since an authority can admit different measures of agents from different groups, there

is a continuum of cutoffs that clear the market given S−c, as long as {(0, . . . , 0)} is not

the only market-clearing cutoff. Let I(S−c) denote the set of market-clearing cutoffs. Let

I∗(S−c) ⊆ I(S−c) denote the unique (by Lemma 2) cutoffs that implement the outcome under

APM A∗c when the authority faces the induced type measure over the set D̃c(S−c). Define

the map Tc : [0, 1]|M|×|C| → [0, 1]|M| as Tc(S) = I∗c (S−c) with T : [0, 1]|M|×|C| → [0, 1]|M|×|C|

given by T = {Tc}c∈C. We first show that the set of fixed points of T equals the set of stable

cutoffs and that T is increasing.

Claim 8. The set of fixed points of T equals the set of stable cutoffs.

Proof. If S∗, with corresponding matching µ∗ (by Lemma 1), is a fixed point of T , then each

c 6= c0 admits their most preferred measure qc agents in D̃c(S
∗
−c) (by Theorem 1). Note that

any Θ̂ that can block the matching must prefer c to their allocation at µ∗ and therefore

Θ̂ ⊂ D̃c(S
∗
−c). Then there cannot be a Θ̂ that blocks µ∗ at c since c already attains the

first-best utility under D̃c(S
∗
−c) from the definition of Tc(S) and Theorem 1. Conversely, if

S∗, with corresponding matching µ∗, is a not fixed point of T , then there exists c such that

Tc(S
∗) 6= S∗c . Let Θ̂ denote the set of agents who are not matched to c at µ∗ but have scores

greater than Tc(S
∗), and Θ̃ denote the set of agents who are matched to c at µ∗ but have

scores lower than Tc(S
∗). From optimality of A∗c (by Theorem 1), Θ̂ blocks µ∗ at c with

Θ̃.

Claim 9. T is increasing.

Proof. Fix an arbitrary c ∈ C and suppose that S ′−c ≥ S−c. Toward a contradiction suppose

that there exists m ∈ M such that t′c,m = Tc,m(S ′) = I∗c (S ′−c) < I∗c (S−c) = Tc,m(S) = tc,m,

i.e., the admissions threshold for group m at authority c goes down. Let f and f ′ be

the induced joint densities of agents over scores at c and groups by the sets D̃c(S−c) and

D̃c(S
′
−c), respectively. Let {xm,c}m∈M and {x′m,c}m∈M denote the measure agents who score

above tm,c for their group (i.e., admitted under A∗c) under D̃c(S−c) and D̃c(S
′
−c), respectively.

As S ′−c ≥ S−c, we have that Dc(S−c, Sc) ⊆ Dc(S ′−c, Sc) for all Sc ∈ [0, 1]|M|. It follows

that f ′(θc) ≥ f(θc) > 0 for all θc = (sc,mc) ∈ [0, 1] × M. As t′c,m < tc,m, f ′ has full

39



support, and f ′ ≥ f , we have that the measure of admitted group m agents under increases

x′c,m > xc,m. But as
∑

k∈M x′k =
∑

k∈M xk = q, we know that there exists an m′ ∈ M such

that x′c,m′ < xc,m′ . It follows that t′c,m′ > tc,m′ , otherwise, if t′c,m′ ≤ tc,m′ , then x′c,m′ ≥ xc,m′ .

But now we have shown the following:

hc(t
′
c,m′) + u′m′,c(x

′
c,m′) > hc(tc,m′) + u′m′,c(xc,m′)

≥ hc(tc,m) + u′m,c(xc,m) > hc(t
′
c,m) + u′m,c(x

′
c,m)

(46)

where the first inequality follows by tc,m′ < t′c,m′ , xc,m′ > x′c,m′ , concavity of um and strictly

increasing hc. The second inequality follows by optimality. This is because the facts that

tc,m > 0 and t′c,m′ < 1 imply that κm = κm′ = 0 and so Equation 32 implies that:

hc(tc,m′) + u′m′,c(xc,m′)− κm′ = hc(tc,m) + u′m,c(xc,m) + κm (47)

with κm′ , κm ≥ 0. The final inequality follows as t′c,m < tc,m and x′c,m > xc,m. But this

contradicts the optimality condition for APM (Theorem 1), which implies that Tc 6= I∗c ,

which is a contradiction. Hence, for all c and m ∈M, Tc,m is an increasing function.

As T : [0, 1]|M|×|C| → [0, 1]|M|×|C| is monotone and [0, 1]|M|×|C| is a lattice under the

elementwise order ≥, Tarski’s fixed point theorem implies that the set of stable matching

cutoffs is a non-empty lattice.

Finally, we use the fact that the set of stable cutoffs is a complete lattice to argue that

there is a unique cutoff consistent with stability.

Claim 10. The stable matching cutoffs are unique.

Proof. Assume that there are multiple stable cutoffs. As the set of stable cutoffs is a lattice,

there exists a largest (S+) and smallest (S−) stable cutoffs, where S+ ≥ S−, with strict

inequality for some m ∈ M, c ∈ C as S+ 6= S−. But then, as there is full support of agent

types and authority c fills the capacity under stable cutoffs S+, it must exceed its capacity

under S−, which is a contradiction. Hence, we have shown that there exists a unique stable

matching cutoff.

The combination of Lemma 1 and Claim 10 completes the proof.

A.4 Proof of Theorem 4

Proof. If φ is equivalent to A∗c , Claim 8 implies that φ is consistent with stability.

We prove consistency with stability implies that φ is equivalent to A∗c by the contrapos-

itive. To this end, suppose that φ is not equivalent to A∗c . It follows that there exists a

full-support density {f̃(sc,m)}sc∈[0,1],m∈M such that φ yields a different allocation than A∗c
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under f̃ . The rest of the proof constructs a full-support measure F with unique stable match-

ing µF such that f̃ is the induced density of scores and groups of the agents who demand

authority c at µF . Given such an F , we will have that φ cannot be consistent with stability

as it yields a different allocation than A∗c , which itself yields µF (c), the set of students c is

matched to in the unique stable matching.

We first define some notation. Given a density f , for any set of types Θ̌ ⊆ Θ, we define

the marginal density of agents with score sc ∈ [0, 1] at authority c in group m ∈M as:

fmarg(Θ̌)(sc,m) =

∫
Θ̌

I[sc(θ) = sc,m(θ) = m] dF (θ) (48)

To construct such an F , we proceed in three steps. First, take a full-support density f 0

that satisfies the following two conditions: i) Define Ŝc ∈ [0, 1]|M| as the cutoff vector that

obtains by applying A∗c to f̃ .28 We assume that f 0 is such that authority c’s cutoff vector

that is consistent with the unique stable matching, µF0 , coincides with Ŝc; ii) for all m ∈M
and sc < Ŝm,c, f

0
marg(Θ)(s,m) < f̃(s,m); and iii) all authorities have strictly positive cutoffs

for all groups at the unique stable matching.

Second, transform f 0 into a new density f 1 that differs from f 0 on the set of types that

is matched with c under µF0 , which we call Θc.
29 We define the scaling factor ι1(sc,m) as:

ι1(sc,m) =
f̃(sc,m)

f 0
marg(Θc)

(sc,m)
(49)

Moreover, we define:

f 1(θ) =

f 0(θ)ι1(sc(θ),m(θ)) if θ ∈ Θc,

f 0(θ) otherwise.
(50)

This changes the scores of the types who are allocated to c under µF 0 but does not change

their total measure, their composition, or their scores at any other authority. Thus, the

unique stable matching under f 1, µF 1 , coincides with µF 0 . Moreover, by assumption i) of

step 1, we have that f 1
marg(Θc)

(sc,m) = f̃(sc,m) for all m and sc ≥ Ŝm,c.

Third, transform f 1 into a new density f 2 that differs on the set of unmatched agents

under f 0 (and also therefore f 1 by step 2), Θ̃, and define the set of types who strictly prefer

c to their assignment under µF 0 (and also therefore µF 1 by step 2), Θ̂c.
30 We define a new

28Which exists as any monotone APM admits a cutoff structure (Lemma 1) and the optimal APM is
monotone (Theorem 1).

29Formally, Θc = {θ : θ ∈ Dc(µF 0), sc(θ) ≥ Ŝm(θ),c)}.
30Formally, Θ̃ = {θ : θ ∈ Dc(µF 1), sc(θ) < Ŝm(θ),c, sc′(θ) < S

µF1

m(θ),c′ for all c′ 6= c}, where S
µF1

m,c′ denotes

the group m cutoff at school c′ at the stable matching µF 1 , which is strictly positive by assumption iii) of
step 2. Moreover, Θ̂c = {θ : θ ∈ Dc(µF 1), sc(θ) < Ŝm(θ),c}.
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scaling factor ι2(sc,m) as:

ι2(sc,m) =
f̃(sc,m)− fmarg(Θ̂c)

(sc,m)

fmarg(Θ̃)(sc,m)
(51)

which is strictly positive by assumption ii) of step 1. We then define f 2 as:

f 2(θ) =

f 1(θ)(1 + ι2(sc(θ),m(θ))) if θ ∈ Θ̃,

f 1(θ) otherwise.
(52)

By construction, f 2
marg(Θ̂c)

(sc,m) = f̃(sc,m) for all m and sc < Ŝm,c. Moreover, µF 2 = µF 1 =

µF 0 as all θ ∈ Θ̃ remain unmatched.

We have now constructed a full-support density f 2 with unique stable matching µF 2 (by

Theorem 3) such that the density over Dc(µF 2) coincides with f̃ . Moreover, by Claim 8,

A∗c selects µF 2(c) from Dc(µF 2). As φ selects a different allocation from Dc(µF 2) (as it has

density of types f̃), it is inconsistent with stability.

A.5 Proof of Theorem 5

Proof. We prove that APM A∗c implements a dominant strategy by backward induction.

Consider the terminal time t = |C| − 1. Some measure of agents λ applies to the authority.

Regardless of the measure λ, by Theorem 1 we have that the APM A∗c is first-best optimal

(to see this more concretely, simply index λ by an arbitrary ω ∈ Ω and apply Theorem 1).

Thus, A∗c is dominant. Moreover, from Theorem 1, any strategy that differs from A∗c on a

strictly positive measure set cannot be optimal. Thus any dominant strategy implements

essentially the same allocation as A∗c . Consider now any time t < |C| − 1, precisely the same

argument applies and A∗c is (essentially uniquely) dominant.
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Online Appendix

for “Adaptive Priority Mechanisms” by Çelebi and Flynn

B Omitted Proofs of Propositions

B.1 Proof of Proposition 1

Proof. Part (i): In state ω the payoff from admitting the highest-scoring minority students

of measure x(ω) is:

qω + (1 + γ − ω)x(ω)− 1

2

(
1

κ
+ γβ

)
x(ω)2 (53)

Thus, the x(ω) that solves the FOC is given by:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
(54)

Under our maintained assumptions, we have that:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
≤ 1 + γ − ω

1
κ

+ γβ
+ κ(ω − ω) < min{κ, q} (55)

and:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
≥ 1 + γ − ω

1
κ

+ γβ
> κ(1− ω) ≥ 0 (56)

Thus, this level of minority admissions is feasible. Substituting, we have that:

V ∗ = qE[ω] +
1

2

E[κ(1 + γ − ω)2]

1 + κγβ
(57)

Consider now the APM A(y) = γ(1−βy). Agents are allocated the resource if their modified

scores exceed ω, with a uniform lottery over students with score exactly ω. Thus, in state

ω, this policy admits measure y(ω) minorities that solve the fixed point equation:

y(ω) = min

{
κ

∫ 1

0

I[s+ A(y(ω)) ≥ ω]ds, q

}
= min{κ (1−max{ω − A(y(ω)), 0}) , q} (58)

Denote the RHS of this fixed point equation by the function RHS(y, ω), which is contin-

uous and decreasing in y. Moreover, RHS(0, ω) = min{κ(1 − max{ω − γ, 0}), q} > 0 and

RHS(min{κ, q}, ω) < min{κ, q}. The second of these inequalities is true because the condi-

tion ω > γ(1−βmin{q, κ}) follows from our assumption that min{κ, q} > 1+γ−ω
1
κ

+γβ
+κ(ω−ω).

Thus, there exists a unique y(ω) implemented by the APM. Moreover, let yA(ω) denote the

unique solution to the equation 58, which gives the measure of admitted minority students
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under APM A at state ω.

yA(ω) = κ(1− (ω − γ(1− βyA(ω))))

= κ(1− ω + γ)− κγβyA(ω)

=
κ(1− ω + γ)

1 + κγβ

(59)

Thus, A implements the optimal level of minority admissions characterized in equation 54

and VA = V ∗.

Part (ii): First, if we admit all minority students over some threshold ŝ, the total score

of admitted minority students is κ
∫ 1

ŝ
sds. Moreover, when we admit measure x minority

students where x ≤ min{κ, q}, this admissions threshold is defined by x = κ
∫ 1

ŝ
ds = κ(1− ŝ).

Thus, we have that ŝ = 1− x
κ
. Finally, the residual measure q−x admitted majority students

all score ω. Thus, the total score is given by s̄ = qω+ (1−ω)x− 1
2κ
x2 for 0 ≤ x ≤ min{κ, q}.

As both quota and priority policies always admit the highest-scoring minority students, the

authority’s utility is given by:

U = qE[ω] + E[(1 + γ − ω)x]− 1

2

(
1

κ
+ γβ

)
E[x2] (60)

We now derive the admitted measure of minority students. In the absence of a priority

or quota policy, α = 0 or Q = 0, we have that x = κ(1 − ω) measure minority students is

admitted. Thus, under a quota policy Q, measure x = max{Q, κ(1− ω)} minority students

are admitted. Under a priority policy, the measure of admitted minority students is x =

κ
∫ 1

ω−α dx = κ(1 + α− ω). In each case x is capped by min{κ, q} and floored by 0.

The expected utility function over quotas is given by one of four cases. First, Q >

min{κ, q} and:

UQ(Q) = qE[ω] + (1 + γ − E[ω]) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2 (61)

Second, Q ∈ [κ(1− ω),min{κ, q}) and:31

UQ(Q) = qE[ω] + (1 + γ − E[ω])Q− 1

2

(
1

κ
+ γβ

)
Q2 (62)

Third, Q ∈ (κ(1− ω), κ(1− ω)) and:

UQ(Q) = qE[ω] +

∫ ω

1−Q
κ

(
(1 + γ − ω)Q− 1

2

(
1

κ
+ γβ

)
Q2

)
dΛ(ω)

+

∫ 1−Q
κ

ω

(
(1 + γ − ω)κ(1− ω)− 1

2

(
1

κ
+ γβ

)
(κ(1− ω))2

)
dΛ(ω)

(63)

31By our maintained assumptions we have that this interval has non-empty interior.
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Finally, Q ≤ κ(1− ω) and:

UQ(Q) = qE[ω] + E [(1 + γ − ω)κ(1− ω)]− 1

2

(
1

κ
+ γβ

)
E
[
(κ(1− ω))2] (64)

We claim that the optimum lies in the second case. See that in case two the strict maximum

is attained at Q∗ = 1+γ−E[ω]
1
κ

+γβ
∈ (κ(1 − ω),min{κ, q}), by our assumptions that min{κ, q} >

1+γ−ω
1
κ

+γβ
+ κ(ω − ω) and κ(1− ω) < 1+γ−ω

1
κ

+γβ
. Moreover, in case three, the first derivative of the

payoff is given by:

U ′Q(Q) =

∫ ω

1−Q
κ

(
(1 + γ − ω)−

(
1

κ
+ γβ

)
Q

)
dΛ(ω) (65)

Thus, checking that the sign of this is positive amounts to verifying that for all Q ∈ (κ(1−
ω), κ(1− ω)), we have that:

Q <
1 + γ − E[ω|ω ≥ 1− Q

κ
]

1
κ

+ γβ
(66)

As the RHS is an increasing function of Q, it suffices to show that:

κ(1− ω) <
1 + γ − ω

1
κ

+ γβ
(67)

which we have assumed. Moreover, the expected utility in the first case equals UQ(κ(1−ω)),

thus is lower than the optimum of the second case. The expected utility in the fourth case

equals UQ(κ(1 − ω)), thus is lower than the optimum of the third case. We therefore have

that:

VQ = qE[ω] + (1 + γ − E[ω])Q∗ − 1

2

(
1

κ
+ γβ

)
Q∗2 (68)

We now turn to characterizing the value of priorities. There are three cases to consider.

First, when κ(1 + α− ω) ≥ min{κ, q} we have that x = min{κ, q} and:

UP (α) = qE[ω] + (1 + γ − E[ω]) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2 (69)

Second, when κ(1 + α− ω) ≥ min{κ, q} ≥ κ(1 + α− ω) we have that:

UP (α) = qE[ω] +

∫ 1+α−min{ q
κ
,1}

ω

(
(1 + γ − ω) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2

)
dΛ(ω)

+

∫ ω

1+α−min{ q
κ
,1}

(
(1 + γ − ω)κ(1 + α− ω)− 1

2

(
1

κ
+ γβ

)
[κ(1 + α− ω)]2

)
dΛ(ω)

(70)

Finally, when min{κ, q} ≥ κ(1 + α− ω), we have that:

UP (α) = qE[ω] + E[(1 + γ − ω)κ(1 + α− ω)]− 1

2

(
1

κ
+ γβ

)
E[(κ(1 + α− ω))2] (71)

47



We claim that the optimum under our assumptions lies only in the third case. First, we

argue that there is a unique local maximum in the third case. Second, we show the value in

the second case is decreasing in α. By continuity, the unique optimum then lies in the third

case.

First, it is helpful to write x̄(α) = κ(1 + α − E[ω]) and ε = κ (E[ω]− ω). The value in

the third case can then be re-expressed as:

UP (α) = qE[ω] + E[(1 + γ − ω) (x̄(α) + ε)]− 1

2

(
1

κ
+ γβ

)
E[(x̄(α) + ε)2]

= qE[ω] + (1 + γ − E[ω])x̄(α)− E[ωε]− 1

2

(
1

κ
+ γβ

)
x̄(α)2 − 1

2

(
1

κ
+ γβ

)
E[ε2]

(72)

Finally, we have that E[ε2] = κ2Var[ω] and E[ωε] = Cov[ω, ε] = −κVar[ω]. Thus:

UP (α) = qE[ω] + (1 + γ − E[ω])x̄(α)− 1

2

(
1

κ
+ γβ

)
x̄(α)2 +

κ

2
(1− κγβ) Var[ω] (73)

We then see that the optimal α∗ in this range sets x̄(α∗) = Q∗ < min{κ, q}. It remains only

to check that this optimal α∗ indeed lies within this case, or equivalently that κ(1+α∗−ω) ≤
min{κ, q}. To this end, see that κ(1 + α∗ − E[ω]) = Q∗, and:

κ(1 + α∗ − ω) = Q∗ + κ(E[ω]− ω) ≤ Q∗ + κ(ω − ω)

≤ 1 + γ − ω
1
κ

+ γβ
+ κ(ω − ω) < min{κ, q}

(74)

where the final inequality follows by our assumption that min{κ, q} > 1+γ−ω
1
κ

+γβ
+ κ(ω − ω).

Second, in the second case we have that the first derivative of the payoff in α is given by:

U ′P (α) =

∫ ω

1+α−min{ q
κ
,1}

d

dα

(
(1 + γ − ω)κ(1 + α− ω)− 1

2

(
1

κ
+ γβ

)
[κ(1 + α− ω)]2

)
dΛ(ω)

= κ

∫ ω

1+α−min{ q
κ
,1}

(
(1 + γ − ω)−

(
1

κ
+ γβ

)
(x̄(α) + ε(ω))

)
dΛ(ω)

(75)

Checking that the sign of this is negative for all α such that κ(1 + α − ω) ≥ min{κ, q} ≥
κ(1 + α− ω) then amounts to checking that:

x̄(α) >
1 + γ − E[ω|ω ≥ 1 + α−min{ q

κ
, 1}]

1
κ

+ γβ
− E

[
ε(ω)|ω ≥ 1 + α−min{ q

κ
, 1}
]

(76)

for all x̄(α) ∈ [min{κ, q}−κ(E[ω]−ω),min{κ, q}−κ(E[ω]−ω)]. So it suffices to check that

the minimal possible value of the LHS exceeds the maximal possible value of the RHS. A
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sufficient condition for this is that:

min{κ, q} − κ(E[ω]− ω) >
1 + γ − ω

1
κ

+ γβ
− κ(E[ω]− ω) (77)

Which holds as we assumed that min{κ, q} > 1+γ−ω
1
κ

+γβ
+ κ(ω − ω). Substituting the optimal

priority policy x̄(α) = Q∗ in equation 71, we obtain

VP = qE[ω] + (1 + γ − E[ω])Q∗ − 1

2

(
1

κ
+ γβ

)
Q∗2 +

κ

2
(1− κγβ) Var[ω] (78)

We have now established that:

∆ = VP − VQ =
κ

2
(1− κγβ) Var[ω] (79)

Part (iii): We have V ∗, VQ, VP . Thus, we can compute the loss from restricting to quota

policies:

LQ =
1

2

κVar[ω]

1 + κγβ
(80)

To find the loss from restricting to priority policies, we compute:

LP = LQ −∆ =
1

2
(κγβ)2 κVar[ω]

1 + κγβ
(81)

Enveloping over these losses yields the claimed formula.

B.2 Proof of Proposition 2

Proof. Adapting Definition 5 to single object setting, we say that a matching µ admits a

cutoff structure if there exists S(ω) = {Sm(ω)}m∈M such that µ(s,m;ω) = 1 if and only if

s ≥ Sm(ω). A mechanism admits a cutoff structure if it admits a cutoff structure at every

ω. We will first prove that any monotone APM admits a cutoff structure.

Lemma 2. A monotone APM admits a cutoff structure.

Proof. For a contradiction, assume it does not. Then there exists ω and matching µ im-

plemented by the monotone APM such that for some m ∈ M, s > s′, µ(s,m;ω) = 0 but

µ(s′,m;ω) = 1. Let xm denote the measure of group m agents allocated the resource at

µ. Since A is a monotone APM and s > s′, we have that A(xm, s) > A(xm, s
′), which

contradicts that A implements µ.

We now use Lemma 2 to show that a monotone APM implements a unique allocation.

Assume for a contradiction that Am(ym, s) is monotone and implements two different alloca-

tions, µ and µ′. Let xm and x′m denote the measure of type m students assigned the resource

at µ and µ′. First, we prove that if µ and µ′ admit the same measure of students from each

group, i.e., xm = x′m for all m, then the average score of admitted students are the same.
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Let sm and s′m denote the score of the lowest-scoring type m students assigned the resource

at µ and µ′.

Claim 11. If xm = x′m for all m ∈M, then s̄h(µ, ω) = s̄h(µ
′, ω)

Proof. Fix an m. Without loss of generality, let sm ≥ s′m. First, since APM has cutoff

structure and xm = x′m, we have that∫
Θ

I{s(θ) ∈ [s′m, sm],m(θ) = m}dFω(s,m) = 0 (82)

Note that this holds regardless of m′ ∈M and whether sm ≥ s′m or s′m ≥ sm. Therefore,

s̄h(µ, ω) =

∫
Θ

µ(s,m)h(s)dFω(s,m)

=
∑
m∈M

∫
Θ

I{s(θ) ≥ sm,m(θ) = m}h(s(θ))dFω(s,m)

=
∑
m∈M

∫
Θ

I{s(θ) ≥ s′m,m(θ) = m}h(s(θ))dFω(s,m)

=

∫
Θ

µ(s,m)h(s)dFω(s,m)

= s̄h(µ
′, ω)

(83)

where line equation holds from Equation 82 and all others are by definition. This finishes

the proof of the claim.

Therefore, if µ and µ′ do not yield identical measures, then there are m and n such

that xm > x′m and x′n > xn. Since xm > x′m, it follows that s′m > sm. Likewise x′n > xn

implies that sn > s′n. Note that these imply: (i) µ′(s′n, n) = 1 while µ′(s′m, n) = 0 and (ii)

µ(sm,m) = 1 while µ(s′n, n) = 0. Thus, the following inequalities hold:

An(s′n, x
′
n) > Am(s′m, x

′
m) ≥ Am(sm, xm) > An(s′n, xn) ≥ An(s′n, x

′
n) (84)

where the first inequality follows from (i), the second inequality follows from the fact

that x′m < xm and A is monotone, the third inequality follows from (ii) and the fourth

inequality follows from the fact that xn < x′n and A is monotone. This equation yields

An(s′n, x
′
n) > An(s′n, x

′
n), which is a contradiction. Therefore, all allocations implemented by

A yield the same x. Thus, from Lemma 2, if a monotone APM A implements µ and µ′, both

allocations admit the highest-scoring measure xm agents from group m and can differ (at

most) on a measure 0 set, proving that all allocations implemented by A are essentially the

same.
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B.3 Proof of Proposition 3

Proof. Let x∗m denote the measure of group m agents in the optimal allocation, with x∗ =

{x∗m}m∈M. A priority policy P (s,m) = h−1(h(s) + u′m(x∗m)) = Am(x∗m, s) implements the

same allocation as the optimal adaptive priority mechanism and by Theorem 1, is optimal.

A quota mechanism with (Q,D) where Qm = x∗m implements x∗ for all D, and is therefore

optimal.

B.4 Proof of Proposition 4

Proof. We first prove the following claim.

Claim 12. µΣ∗ is (almost surely) a deterministic allocation that corresponds to a cutoff

matching µ∗.

Proof. Since there is a continuum of agents, under any Σ∗, with probability 1, any authority

c faces a given set of agents who apply ΘA,Σ∗
c with induced measure λΣ∗

c . As c uses APM

A∗c , with probability 1, any agent θ is admitted to an authority if and only if sc(θ) ≥ SΣ∗
m,c,

where SΣ∗
m,c denotes the cutoffs when APM A∗c is applied to agent measure λΣ∗

c . Since the

agents have strict preferences, in any equilibrium, each agent applies to the �θ −maximal

authority in {c : sc(θ) ≥ SΣ∗
m,c}, and is admitted, which establishes that µΣ∗ is (almost surely)

deterministic allocation that corresponds to a cutoff matching with cutoffs SΣ∗
m,c.

We now establish that µΣ∗ is the unique stable matching of the economy.

Claim 13. µ∗ is the unique stable matching of this economy.

Proof. For a contradiction, assume µΣ∗ is not stable. Let S denote the unique cutoffs associ-

ated with µΣ∗ . Since µΣ∗ is not stable, by Claim 8, S is not a fixed point of T . Let tc = Tc(S).

Since S is not a fixed point of T , there exists m ∈M and c ∈ C such that tm,c 6= Sm,c. More-

over, let {xtm,c}m∈M and {xsm,c}m∈M denote the measure of agents in D̃c(S−c) who are above

the admission thresholds for authority c under tc and Sc. As in Claim 9, note that if there

exists m, c such that tm,c > Sm,c, then from full support, we have that xsm,c > xtm,c. Since the

authority fills its capacity in both cases, there must exists m′ such that xtm′,c > xsm′,c which is

only possible if Sm,c > tm,c. By an identical argument, if there is m, c such that tm,c < Sm,c,

then there exists m′ Sm′,c < tm′,c. Therefore, whenever tm,c 6= Sm,c, there exists c and m,m′

such that tm,c > Sm,c and Sm′,c > tm′,c. But now we have shown the following:

hc(Sc,m′) + um′(x
s
c,m′) > hc(tc,m′) + um′(x

t
c,m′) ≥ hc(tc,m) + um(xtc,m) > hc(Sc,m) + um(xsc,m)

51



where the first inequality follows by tc,m′ < Sc,m′ , x
s
c,m′ < xtc,m′ , and concavity of um. The

second inequality follows by optimality. This is because the facts that tc,m > 0 and t′c,m′ < 1

imply that the Lagrange multipliers in the proof of Theorem 1 κm = κm′ = 0 . The final

inequality follows since tm,c > Sm,c and xtm,c < xsm,c. However, this is a contradiction since

hc(Sc,m′) + um′(x
s
c,m′) > hc(Sc,m) + um(xsc,m) implies that there exists ε > 0, an agent θ with

score sc(θ) = Sc,m′ − ε and type m(θ) = m has higher score under A∗ than the agent θ′ with

score sc(θ
′) = Sc,m and type m(θ′) = m. Since θ′ is admitted to c, θ would be if it applied

to c. Moreover, from full support, there is such θ whose top choice is c and the strategy of

this agent is not a best response, which is a contradiction.

The combination of Claims 12 and 13 completes the proof.

C Additional Results for the Example (Section 2)

C.1 Formal Equivalence Between Prices vs. Quantities and Pri-

orities vs. Quotas

The structure of the comparative advantage of priorities over quotas from Section 2 hints

at a more formal relationship between our analysis of affirmative action policies and Weitz-

man’s analysis of price and quantity regulation. In Weitzman’s model, there is a single firm

producing a quantity of a single good x ∈ R with production costs C(x, ζ) and benefits

B(x, ζ ′):

C(x, ζ) = a0(ζ) + (C ′ + a1(ζ))(x− x̂) +
C ′′

2
(x− x̂)2

B(x, ζ ′) = b0(ζ ′) + (B′ + b1(ζ ′))(x− x̂) +
B′′

2
(x− x̂)2

(85)

where B′, C ′, C ′′ > 0, B′′ < 0, and ζ and ζ ′ are random variables. The regulator can either

set a price that the firm must charge (after which the firm chooses its optimal production

quantity) or mandate the production of a given quantity. The comparative advantage of

prices over quantities ∆Weitzman is then defined as the difference between expected benefits

net of costs under the optimal price regime minus the corresponding net benefits under the

optimal quantity regime. This comparative advantage is given by:

∆Weitzman =
C ′′−1

2

(
1 + C ′′−1B′′

)
Var[a1(ζ)] (86)

The intuition for this formula is that when benefits are more curved than costs |B′′| >
C ′′, reducing variability in production is more valuable than the gain of having producers

minimize costs. Thus, quantities are preferred. On the other hand, when costs are more
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curved than benefits, prices are preferred as there is greater production when producers have

the lowest marginal costs of production.

These trade-offs are, in a certain sense, formally analogous to those that we have high-

lighted between priorities and quotas. In particular, under the mapping C ′′−1 7→ κ, B′′ 7→
−γβ, Var[ω] 7→ Var[a1(ζ)], we have that ∆Weitzman = ∆. The intuition for this is that C ′′−1

in the Weitzman framework determines how sensitive production is to changes in marginal

cost, while κ in our framework determines how sensitive the admitted measure of minority

students is to the relative scores. Moreover, B′′ corresponds to curvature in the benefits of

production while γβ corresponds to curvature in the benefits of admitting more minority stu-

dents. Finally, Var[a1(ζ)] corresponds to the authority’s uncertainty in the level of marginal

costs of production while Var[ω] corresponds to the authority’s uncertainty regarding the

marginal cost of admitting more minority students in terms of lost total score. Thus, the

positive selection effect whereby priorities admit more minority students in the states of the

world where they score highest is directly analogous to the effect that price regulation gives

rise to the greatest production in states where the firm’s marginal cost is lowest. Moreover,

the guarantee effect whereby quotas prevent variation in the measure of admitted minority

students across states of the world is analogous to the ability of quantity regulation to stabi-

lize the level of production. Importantly, our results therefore allow one to apply established

price-theoretic intuition for the benefits of price vs quantity choice to matching markets

without an explicit price mechanism.

C.2 Beyond Affirmative Action: Medical Resource Allocation

The lessons of this paper apply not only to affirmative action in academic admissions, but

also more broadly to settings in which centralized authorities must allocate resources to

various groups. One prominent such context is the allocation of medical resources during

the Covid-19 pandemic. An important issue faced by hospitals is how to prioritize health

workers (doctors, nurses and other staff) in the receipt of scarce medical resources: hospitals

wish to both treat patients according to clinical need and ensure the health of the frontline

workers needed to fight the pandemic. To map this setting to our example, suppose that the

score s is an index of clinical need for a scarce medical resource available in amount q, the

measure of frontline health workers is κ, and ω indexes the level of clinical need in the patients

currently (or soon to be) treated by the hospital, which is unknown. The risk aversion of the

authority γβ corresponds to both a fear of not treating sufficiently many frontline workers

and excluding too many clinically needy members of the general population.

In practice, both priority systems and quota policies have been used, as detailed exten-

53



sively by Pathak, Sönmez, Unver, and Yenmez (2021).32 The primary concern that has been

voiced is that if a priority system is used, some groups (or characteristics) may be completely

shut out of allocation of the scarce resource and that this is unethical, so quotas should be

preferred. Our framework can be used to understand this argument: if there is an unusually

high draw of ω, a priority system would lead to the allocation of very few resources to front-

line workers, and vice-versa. Our Proposition 1 implies that if the authority is very averse to

such outcomes (γβ is high), quotas will be preferred and for exactly the reasons suggested.

However, we also highlight a fundamental benefit of priority systems in inducing positive

selection in allocation: when ω is high, it is beneficial that fewer resources go to the less

sick medical workers and more to the relatively sicker general population. More generally,

we argue that an adaptive priority mechanism that awards frontline workers a score subsidy

that depends on the number of more clinically needy frontline workers could further improve

outcomes.

An important additional consideration in this context arises if the hospital or authority

must select a regime (priorities or quotas) before it understands the clinical need of its

frontline workers κ, after which it can decide exactly how to prioritize these workers or

set quotas, but before ultimate demand for medical resources ω is known. It follows from

Proposition 1 that the comparative advantage of priorities over quotas is:

E[∆] =
1

2

(
E[κ]− (Var[κ] + E2[κ])γβ

)
Var[ω] (87)

Thus, an increase in uncertainty Var[κ] regarding the need of frontline workers leads to a

greater preference for quotas. This highlights a further advantage of quotas in settings where

a clinical framework must be adopted in the face of uncertainty regarding the clinical needs

of frontline workers, as was the case at the onset of the Covid-19 pandemic.

C.3 Optimal Precedence Orders

Thus far we have modelled quotas by first allocating minority students to quota slots and

then allocating all remaining students according to the underlying score. However, we could

have instead allocated q − Q places to all agents according to the underlying score and

then allocated the remaining Q places to minority students. The order in which quotas

are processed is called the precedence order in the matching literature and their importance

for driving outcomes has been the subject of a growing literature (see e.g., Dur, Komin-

ers, Pathak, and Sönmez, 2018; Dur, Pathak, and Sönmez, 2020; Pathak, Rees-Jones, and

Sönmez, 2022). Our framework can be used to understand which precedence order is optimal,

32Some other papers that study the allocation of scarce medical resources are Akbarpour, Budish, Dwor-
czak, and Kominers (2021), Grigoryan (2021) and Dur, Thayer, and Phan (2022).
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a question that has not yet been addressed.

In this example, the same factors that determine whether one should prefer priorities

or quotas determine whether one should prefer processing quotas second or first. By virtue

of uniformity of scores, it can be shown in the relevant parameter range that a priority

subsidy of α is equivalent to a quota policy of κα when quotas are processed second. Thus,

the comparative advantage of priorities over quotas is exactly equal to the comparative

advantage of processing quotas second over first. The intuition is analogous: processing

quotas second allows for positive selection while processing quotas first fixes the number of

admitted minority students. Thus, on the one hand, when the authority is more risk-averse,

they should process quota slots first to reduce the variability in the admitted measure of

minority students. On the other hand, when they are less risk-averse, they should process

quotas second to take advantage of the positive selection effect such policies induce.

Corollary 1. The optimal quota-second policy achieves the same value as the optimal pri-

ority policy; quota-second policies are preferred to quota-first policies if and only if 1
κ
≥ γβ.

Proof. We show that a quota-second policy Q is equivalent to a priority subsidy of α(Q) = Q
κ

.

A quota-second policy admits the highest-scoring x = κ(1−ω)+Q minority students, floored

by zero and capped by min{κ, q}. A priority policy α(Q) = Q
κ

admits the highest-scoring

x = κ(1 + α(Q) − ω) = κ(1 − ω) + Q minority students, floored by zero and capped by

min{κ, q}. Thus, state-by-state, quota-second policy Q and priority subsidy α(Q) = Q
κ

yield

the same allocation. The claims then follow from Proposition 1.

We emphasize that this equivalence is a result of the uniform distribution of scores and

merely illustrates the similarity between priority policies and processing quotas second. This

result does not hold in the more general model we study in the remainder of the paper.

Indeed, in Theorem 2, we show that for any quota policy to be optimal in the presence of

uncertainty, it must process quotas first.
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D Efficient Mechanisms with Multiple Authorities

We have so far characterized the decentralized outcome, but two natural questions remain.

First, is the decentralized outcome, which corresponds to the stable allocation, efficient?

Second, if not, what kind of centralized solution can remedy any inefficiency? We show

that the decentralized outcome is generally inefficient and that a modified, centralized APM

mechanism restores efficiency.

D.1 Inefficiency of the Decentralized Outcome

The notion of efficiency that we will consider is utilitarian efficiency over authorities. A

mechanism in the multi-authority setting is a function φ : Ω → U , where U is the set of

matchings (which, by definition, encodes feasibility requirement imposed in the single au-

thority setting). We define the total authority value ΞT of a mechanism φ under distribution

Λ ∈ ∆(Ω) as the total expected utility of the allocations induced by that mechanism:

ΞT (φ,Λ) =
∑
c∈C̄

Ξc(φ,Λ) (88)

A mechanism is efficient if it maximizes total authority value for all possible distributions:

Definition 8 (Efficiency). A mechanism φ∗ is efficient if:

ΞT (φ∗,Λ) = sup
φ

ΞT (φ,Λ) (89)

for all Λ ∈ ∆(Ω).

For the remainder of the paper, so that scores are directly comparable across authorities

and allocations are interior, we impose the following assumption:

Assumption 2. Scores and preferences are such that sc(θ) = sc′(θ), hc = h and gc = Id,

where Id is the identity function, for all c, c′ ∈ C̄ and θ ∈ Θ. Moreover, limx→+0 u
′
m,c(x) =∞

and um,c is strictly concave for all m ∈M and c ∈ C̄.

Assumption 2 makes scores a common numeraire across authorities and is akin to the

standard quasi-linearity assumption in mechanism design. For example, it may be suitable in

settings where the score is derived from a common index of academic attainment, such as in

Chicago Public Schools. This assumption does not impose that all authorities have common

marginal rates of substitution between scores and diversity, as they are allowed unrestricted

heterogeneity in diversity preferences. We add the Inada condition for analytical tractability.

We argue that it is also reasonable to assume that failing to admit any individuals from a

given group is intolerable for authorities.

56



With the efficiency benchmark defined, we now demonstrate that the decentralized equi-

librium outcome can fail to be efficient. We prove this result via an explicit example with

two authorities, c and c′ of capacity 1
4
, and two groups of agents, m and m′ of measure 1

2
.

All agents in group m prefer c′ to c and all agents in group m′ prefer c to c′. Authority c

values admitting group m agents more on the margin than group m′ agents, and authority

c′ values admitting group m′ agents more on the margin than group m agents. Using the

optimal APMs, both authorities admit more agents of the group whose admissions they value

relatively less than the efficient benchmark. The intuition for this is that both authorities

“steal” the high-scoring agents of the group whom they relatively less value from the other

authority, an externality that they do not internalize.

Proposition 5 (Equilibrium Inefficiency). All authorities using the privately optimal APMs

{A∗c}c∈C is not necessarily efficient.

Proof. We prove the result by explicitly constructing an economy in which the optimal

APMs lead to inefficiency. There are two authorities, c and c′, both with capacity 1/2 and

two groups of agents, m and m′. Both agent groups have a measure of 1 and their scores are

uniformly distributed in [1/2, 1]. Authorities’ utility functions are given by

ξc (s̄h, x) ≡ s̄h +
1

4

√
xm +

1

8

√
xm′ (90)

ξc′ (s̄h, x) ≡ s̄h +
1

4

√
xm′ +

1

8

√
xm (91)

with h(x) ≡ x while all agents of type m prefer authority c′ to c while all agents of type m′

prefer authority c to c′.33

We will now derive the stable outcome of this economy, which is (up to measure zero

transformation) the unique outcome implemented when the authorities use the optimal APM.

Let xcm denote the measure of type m agents at authority c. First, note that higher-scoring

agents from the same group go to the more preferred authority. To see why this is true,

note that if m(θ) = m(θ′) = m, s(θ) > s(θ′) and µ(θ) = c while µ(θ′) = c′, c and θ

would violate within group fairness since θ has higher priority at c than θ′ regardless of the

allocation. As a result, in any stable allocation µ, the highest-scoring xcm′ type m′ agents are

assigned to c and the next highest-scoring xc
′

m′ agents are assigned to authority c′, while rest

of the type m′ agents are not assigned to any authority. The allocation for type m agents is

analogous. Moreover, since q = 1/2 for both authorities, xc
′

m′=1/2-xcm′ and xcm=1/2-xc
′
m and

the allocation is completely determined by the measures xcm′ and xc
′
m.

33This assumption on the preferences and the distribution of scores violate our full support assumption,
but adding an arbitrarily small full support density to all types makes arbitrarily small changes in the
utility under the stable matching and optimal allocation but complicates the calculation, so we omit it for
expositional clarity.
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Next, note that at µ, the adaptive priority of the lowest-scoring type m and m′ agents

must be equal at both authorities. To see why this is true, take authority c without loss

of generality. Let scm′ = 1 − xcm′ and scm = 1 − xcm′ − xcm denote the scores of the lowest-

scoring type m and m′ agents and Am denote the optimal APM. For a contradiction, assume

Am(xcm, s
c
m) > Am′(x

c
m′ , s

c
m′). Since agents of type m′ with scores lower than scm are unas-

signed at µ, for small enough ε, a type m agent with score scm − ε and authority c blocks

the matching. Similarly, assume Am(xcm, s
c
m) < Am′(x

c
m′ , s

c
m′). Since agents of type m′ with

scores lower than sc
′
m are assigned to authority c or unmatched at µ, a type m′ agent with

score scm′ − ε and authority c blocks the matching µ. Thus, the following equations must be

satisfied:

Am(xcm, s
c
m) = Am′(x

c
m′ , s

c
m′) and Am(xc

′

m, s
c′

m) = Am′(x
c′

m′ , s
c′

m′) (92)

As the optimal APM in this setting is given by:

A∗m̂,ĉ(ym̂, s) ≡ s+ u′m̂,ĉ(ym̂) (93)

for all m̂ ∈ {m,m′} and ĉ ∈ {c, c′}, we have that:

1− xcm′ +
1

8

1√
xcm′

= 1− xcm′ − xcm +
1

4

1√
1/2− xcm′

(94)

and:

1− xc′m +
1

8

1√
xc′m

= 1− xc′m − xc
′

m′ +
1

4

1√
1/2− xc′m

(95)

These equations are identical up to relabelling and so xcm′ = xc
′

m′ = x∗ for some x∗. Thus,

we need to find the solution to the following single equation to characterize the allocation:

1− x∗ +
1

8

1√
x∗

=
1

2
+

1

4

1√
1/2− x∗

(96)

Observe that this equation can be rewritten as the fixed point equation:

x∗ =
1

2
+

1

8

1√
x∗
− 1

4

1√
1/2− x∗

(97)

We observe that the RHS satisfies the following properties: (i) limx∗→0 RHS(x∗) = ∞, (ii)

limx∗→ 1
2

RHS(x∗) = −∞, and (iii) RHS′(x∗) < 0 for all x∗ ∈ (0, 1
2
). Thus, there exists a

unique solution. Moreover, we can guess-and-verify that this solution is x∗ = 1
4
.

In summary, if both authorities use the optimal APM, then the outcome is

µ(θ) =


c if m(θ) = m, s(θ) ∈ [1/2, 3/4) or m(θ) = m′, s(θ) ∈ [3/4, 1]

c′ if m(θ) = m′, s(θ) ∈ [1/2, 3/4) or m(θ) = m, s(θ) ∈ [3/4, 1]

θ otherwise

(98)
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In this outcome, both authorities have an average score of 3/4 and admit measure 1/4 agents

from both groups, giving them a utility of 15/16. Thus, total utilitarian welfare is 15/8 under

the decentralized outcome.

We now show that this does not attain the efficient benchmark. A necessary condition

for the (utilitarian) efficient outcome is that for c:

1

4

1
√
xcm

=
1

8

1√
1/2− xcm

(99)

and for c′:
1

4

1√
xc
′
m′

=
1

8

1√
1/2− xc′m′

(100)

This implies that xcm = xc
′

m′ = 4/10 and xcm′ = xc
′
m = 1/10. In this case, the same set of

agents is admitted overall, so the score contribution to utility remains 3/4 on average across

the authorities. Total utilitarian welfare is now:

3/2 + 1/2×
√

4/10 + 1/4×
√

1/10 ≈ 1.895 > 1.875 = 15/16 (101)

Completing the proof.

D.2 An Efficient Centralized Mechanism

The inefficiency of each authority using a decentralized APM stems from the implicit in-

completeness of markets: if we added the ability for authorities to pay each other for agents

in the equilibrium allocation, then they would have willingness-to-pay to do so. A central-

ized mechanism can remedy this issue by ensuring the cross-sectional allocation of agents to

authorities is optimal.

We propose the following augmentation of an APM to solve this problem, an adaptive

priority mechanism with quotas (APM-Q). The idea behind this hybrid mechanism is to use

aggregate, market-level priorities with authority-specific quotas. To this end, an APM-Q

comprises an aggregate non-separable APM Ã = {Ãm}m∈M with Ãm : R|M| × [0, 1] → R
and a profile of quota functions Q = {Qm,c}m,c∈M with with Qm,c : R|M| → R+. Intuitively,

the aggregate APM pins down the aggregate measures of allocations of each group to any

authority {xm}m∈M, where xm =
∑

c∈C̄ xm,c. The non-separability of this APM simply

means that the measures of all groups matter for the adaptive priority of any agent. Given

the aggregate measure of allocation for group m, the quota function for authority c assigns

Qm,c({xm}m∈M) agents of type m to authority c.

Definition 9 (Adaptive Priority Mechanism with Quotas). An adaptive priority mechanism

with quotas (Ã, Q) comprises a non-separable APM Ã and a quota function Q. An APM-Q

implements allocation µ if the following are satisfied:
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1. Aggregate allocations are in order or priorities: µ(θ) ∈ C̄ if and only if for all θ′ with

µ(θ′) = c0, we have that:

Ãm(θ)({xm(µ)}m∈M, s(θ)) > Ãm(θ′)({xm(µ)}m∈M, s(θ′)) (102)

2. Authority-level allocations are given by the corresponding quota functions:

xm,c(µ) = Qm,c({xm(µ)}m∈M) (103)

3. The resources are fully allocated: ∑
m∈M

xm,c(µ) = qc (104)

By appropriate choice of the APM and quota functions, we can derive an APM-Q that

is efficient. To this end, define the optimally-allocated aggregate utility from diversity:

ũ({xm}m∈M) = max
{xm,c}c∈C

∑
c∈C

∑
m∈M

um,c(xm,c)

s.t.
∑
c∈C

xm,c ≤ xm,
∑
m∈M

xm,c ≤ qc, ∀m ∈M, c ∈ C
(105)

Moreover, define the marginal value of aggregate group m admissions ũ(m)(y) = ∂
∂ym

ũ(y)

and the marginal value of authority capacity ũqc(y) = ∂
∂qc
ũ(y). Using these marginal values,

we can design an efficient APM-Q that combines market-level APMs with authority-level

quotas:

Theorem 6 (Efficient APM-Q). Every allocation induced by the following APM-Q (Ã, Q)

is efficient:

1. The non-separable APM is given by Ãm(y, s) = h−1
(
h(s) + ũ(m)(y)

)
2. The quota functions are given by Qm,c(y) =

(
u
′
m,c

)−1 (
ũ(m)(y) + ũqc(y)

)
Proof. First, we define a fictitious composite authority with utility function defined over

vectors of total scores s̄h = {s̄ch}c∈C, and aggregate allocation to each group x = {xm}m∈M.

To do this, we define:

ũ({xm}m∈M) = max
{xm,c}c∈C

∑
c∈C

∑
m∈M

um,c(xm,c)

s.t.
∑
c∈C

xm,c ≤ xm,
∑
m∈M

xm,c ≤ qc, ∀m ∈M, c ∈ C
(106)

and ˜̄sh =
∑

c∈C s̄
c
h. We write the utility function of this composite authority as

ξ̃ (˜̄sh, x) = ˜̄sh + ũ(x) (107)

We first establish that ũ satisfies the properties necessary to invoke Proposition 6, which

establishes the optimality of the claimed APM for the fictitious authority.
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Claim 14. The function ũ is concave and partially differentiable in each argument.

Proof. First, we establish concavity. That is, for all λ ∈ [0, 1] and x, x′ ∈ R|M|+ , we have that

ũ(λx′ + (1− λ)x) ≥ λũ(x′) + (1− λ)ũ(x). Let {x∗m,c}m∈M,c∈C and {x∗′m,c}m∈M,c∈C correspond

to optimal values under x and x′. Under x̃ = λx′+(1−λ)x, we have that λx∗
′
m,c+(1−λ)x∗m,c

is feasible for all m ∈M and c ∈ C. Thus, we have that:

ũ(x̃) ≥
∑
m∈M

∑
c∈C

um,c(λx
∗′
m,c + (1− λ)x∗m,c)

≥
∑
m∈M

∑
c∈C

λum,c(x
∗′
m,c) + (1− λ)um,c(x

∗
m,c)

= λũ(x′) + (1− λ)ũ(x)

(108)

where the second inequality is by concavity of um,c for all m ∈M, c ∈ C.
Second, we establish partial differentiability in each argument. That is, for all x ∈

R|M|++ , ∂
∂xm

ũ(x) = ũ(m)(x) exists. This follows by Corollary 5 in Milgrom and Segal (2002).

Concretely, the domain of optimization can be taken to be a compact and convex subset of

a normed vector space – a sufficiently large cube in R|M|×|C|+ equipped with the Euclidean

norm, for example. The objective function does not depend on x, and constraints are linear

in x (and therefore both continuous and continuously differentiable). Moreover, as x � 0,

there exists a {xm,c} that satisfies all constraints with strict inequality.

It follows that the objective function of the composite authority satisfies Assumption 3,

and so Proposition 6 implies that the non-separable APM Ãm(y, s) = h−1
(
h(s) + ũ(m)(y)

)
uniquely implements the first-best optimal allocation for the composite authority.

It remains to establish that the quota functions implement the optimal allocation {xm,c}
conditional on {xm}. Let λm be the Lagrange multiplier on the xm constraint, γc be the

Lagrange multiplier on the qc constraint and κm,c be the Lagrange multiplier on the positivity

constraint. Under our maintained Inada condition, we have that κm,c = 0. Moreover, by

Corollary 5 in Milgrom and Segal (2002), we have that ũ(m)(x) = λm, ũqc(x) = γc, and

u′m,c(x
∗
m,c) = λm + γc − κm,c. Hence, we obtain that:

x∗m,c =
(
u
′

m,c

)−1 (
ũ(m)(x) + ũqc(x)

)
(109)

Thus, the following profile of quota functions implements the optimal cross-sectional alloca-

tion:

Qm,c(x) =
(
u
′

m,c

)−1 (
ũ(m)(x) + ũqc(x)

)
(110)

Completing the proof.
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The proof of this result constructs a fictitious aggregate authority in our single object

setting. The claimed APM is optimal for this aggregate authority by a non-separable adap-

tation of Theorem 1. The substantial step in this proof establishes that ũ is increasing,

concave, and differentiable by employing the restrictions provided by Assumption 2. Then,

given the allocation induced by this APM, we construct the quota function to optimally

allocate the level of aggregate admissions induced by the APM.

Intuitively, this mechanism remedies inefficiency by “completing markets.” There is

a common “market price” for each group given by Pm = ũ(m)(x) and an authority-level

“shadow price of admissions” Pc = ũqc(x). Authorities are allocated agents so that the

marginal benefit of additional agents equals the sum of the market price and shadow price

of admissions u′m,c(xm,c) = Pm + Pc. Hence, through the completion of markets, a central-

ized planner can allocate agents efficiently and internalize the externalities that prevented

efficiency under the decentralized outcome. Notice that this market involves relatively few

prices as it involves only |M|+|C| shadow prices rather than the full set of |M|×|C| marginal

values.
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E Additional Quantitative Results

In this Appendix, we describe both the methodology and results of the two robustness exer-

cises that are not discussed in full detail in the main text. First, we estimate the gains from

APM when we assume that CPS sets one tier size for all tiers rather than separately opti-

mizing the sizes of the four tiers. Second, we estimate the gains from APM under alternative

utility functions that differentially penalize underrepresentation and overrepresentation.

E.1 Estimation with Homogeneous Reserves

As we have motivated, in this section we estimate an alternative model, where CPS chooses

a single reserve size, r, instead of separate reserve sizes for all tiers. Formally, we replace the

vector of reserve sizes of the four socioeconomic tiers, r = (r1, r2, r3, r4) by r = (r, r, r, r). In

this setting, we define the marginal benefit of increasing reserve size as

G(r,Λ; β, γ) =
∂

∂r
Ξ(r,Λ; β, γ) (111)

As in the general model, any (interior) reserve policy r∗ must satisfy G(r̂∗, Λ̂; β, γ) = 0.

This first-order condition yields one moment, and so we can estimate one parameter. To

this end, we fix γ, and for each γ ∈ [1, 10], and we estimate β∗(γ) as the exact solution to

the following empirical moment condition:

G(r̂∗, Λ̂; β∗(γ), γ) = 0 (112)

Figure 7 plots the logarithm of the estimated β∗(γ). The estimated β∗(γ) is increasing

in γ. As the loss term |xt − 0.25| is in (0, 1), β∗(γ) is increasing and convex in γ, where

β∗(1) = 34 and β∗(10) = 1.436 × 108. In Figure 8, we plot the gains as a function of γ,

which shows that even though the estimated value for β moves quite a lot, the empirical

gains range from 2 to 4 points. This also shows that the estimated gain from APM of 2.1

under our benchmark specification is close to the lower bound of the estimated gains under

the alternative specification with homogeneous reserves.

Finally, we benchmark these gains as a fraction of loss from underrepresentation under

the CPS policy, where the loss of underrepresentation is calculated under the estimated

parameter values. In Figure 9, we plot the gains under APM as a percentage of diversity

loss under the CPS policy. These range from 26% to 300%. Our baseline percentage gain

estimate of 37.5% is again close to the lower bound that we estimate under the alternative

specification with homogeneous reserves.
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Figure 7: Estimated Slope of Utility Under Homogeneous Reserves
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Note: This graph plots the estimated logarithm of the slope of utility log β∗(γ) in the homogeneous
reserve case as we vary the curvature of utility γ ∈ [1, 10].

Figure 8: Payoff Gains from APM Under Homogeneous Reserves
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Note: This graph plots the estimated difference in payoffs in the homogeneous reserves case between
the optimal APM and the CPS policy as we vary the curvature of utility γ ∈ [1, 10].
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Figure 9: The Gains from APM as a Fraction of the Loss From Underrepresentation Under
Homogeneous Reserves
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Note: This graph plots the estimated difference between the payoffs under the optimal APM under
homogeneous reserves as a fraction of loss from underrepresentation as we vary the curvature of
utility γ ∈ [1, 10].

E.2 Gains from APM Under Different Utility Functions

In this section, as we have motivated, we estimate alternative objective functions to investi-

gate the robustness of our findings.

First, we analyze a setting that includes a loss term only for underrepresented tiers (and

does not penalize overrepresentation of any tier). To this end, we replace the term |0.25−xt|
with min{0, (0.25 − xt)} and perform the same estimation with the following parametric

utility function:

ξ(s̄, x; β, γ) = s̄+ β
4∑
t=1

(min{0, (0.25− xt)})γ (113)

The estimated parameter values are β∗ = −52058 and γ∗ = 3.87467. We compute the

difference between the empirical payoffs under APM and the CPS reserve policy to be 0.262,

which is significantly lower than our estimate of 2.1. However, the reason for this is that the

diversity domain is estimated to be less important under this specification, and the diversity

loss under the CPS policy is 2.71. Thus, improvements from APM correspond to 9.6% of

the loss from underrepresentation, which is attenuated relative to our baseline specification,

but remains non-negligible.

Second, we allow CPS to care differentially about underrepresentation and overrepresen-
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tation by considering a utility function with separate coefficients for underrepresented and

overrepresented tiers. To this end, we define the following loss function:

f(xt, βl, βh, γ) =

βl(0.25− xt)γ if xt ≤ 0.25

βh(xt − 0.25)γ if xt > 0.25
(114)

where βl indexes the loss from underrepresentation of a tier, while βh indexes the loss from

overrepresentation. We then perform the same estimation with the following parametric

utility function:

ξ(s̄, x; β, γ) = s̄+
4∑
t=1

f(xt, βl, βh, γ) (115)

This yields the following estimated values: β∗l = −1362270, β∗h = −12278, γ∗ = 5.28021.

We compute the difference between the empirical payoffs under APM and the CPS reserve

policy to be 0.195 and the loss from underrepresentation under the CPS policy to be 2.24.

Thus, we conclude that improvement from APM corresponds to 8.7% of loss from underrep-

resentation under the CPS policy, which is similar to what we obtain under the specification

in which there is no loss from overrepresentation.
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Supplementary Material

for “Adaptive Priority Mechanisms” by Çelebi and Flynn

F Extension to More General Authority Preferences

In this Appendix, we relax Assumption 1 to allow for (i) non-separable diversity preferences,

(ii) non-separable score and diversity preferences, (iii) non-differentiable preferences, and

(iv) non-concave diversity preferences. We show how these changes in assumptions lead to

certain modified APM mechanisms becoming first-best optimal.

F.1 Non-Separable Diversity Preferences

First, we relax Assumption 1 and instead suppose that the authority’s preferences satisfy

the following assumption:

Assumption 3. The authority’s utility function can be represented as:

ξ (s̄h, x) ≡ g (s̄h + u(x)) (116)

for some continuous, strictly increasing function g : R → R and a concave, partially differ-

entiable u in each argument.

In this environment, we define a non-separable APM Ã = {Ãm}m∈M where Ãm : R|M| ×
[0, 1]→ R. This implements allocation µ in state ω as per Definition 2 (under the modifica-

tion of point 1 in Definition 2 to allow Am to depend on x rather than just xm).

We generalize Theorem 1 to show that the following non-separable APM uniquely imple-

ments the first-best optimal allocation:

Proposition 6. The non-separable APM Ã∗m(y, s) ≡ h−1(h(s) + u(m)(y)) and uniquely im-

plements the first-best optimal allocation.34

Proof. Follow every step in the proof of Theorem 1 with
∑

m∈M um(xm) replaced by u(x)

and u′m(xm) replaced by u(m)(x).

Thus, allowing for non-separable diversity preferences does not substantially change the

analysis of adaptive priority mechanisms. One must simply adapt the APM to be non-

separable to allow cross-group diversity concerns to shape the marginal benefits of admitting

agents from various groups. The main difference is that this a non-separable APM does not

necessarily allow the greedy implementation of Algorithm 1. This is because, in the presence

34Where we define u(m)(y) = ∂
∂ym

u(y).

68



of cross-group adaptive priorities, it is no longer enough to rank agents within their own

group. A small adaptation to this algorithm that dynamically admits agents, starting from

the highest-scoring agents in each group, would naturally implement the unique first-best

optimal allocation.

F.2 Non-Separable Score and Diversity Preferences

Second, we relax Assumption 1 and instead suppose that the authority’s preferences are

represented by:

Assumption 4. The authority’s Bernoulli utility function can be represented as:

ξ (s̄h, x) (117)

where ξ is monotone, differentiable, and concave.

We define a state-dependent APM Â = {Âm}m∈M where Âm : R|M| × [0, 1] × Ω → R.

This implements allocation µ in state ω as per Definition 2 (where point 1 in Definition 2 is

modified to allow Am to depend on both x and ω).

In this more general setting, we now find a state-dependent APM that implements the

optimal allocation.

Proposition 7. The following state-dependent APM implements a first-best optimal alloca-

tion:

Am(y, s, ω) ≡ h−1

(
h(s) +

ξxm (s̄h(y, ω), y)

ξs̄h (s̄h(y, ω), y)

)
(118)

where s̄h(y, ω) is the score index in state ω when the highest-scoring y = {ym}m∈M agents

of each attribute are allocated.

Proof. Follow every step in Theorem 1 with
∑

m∈M
∫ h(1)

s̃m(xm)
s̃f̃m(s̃)ds̃ +

∑
m∈M um(xm) re-

placed with ξ (s̄h(y, ω), x) where s̄h(y, ω) =
∑

m∈M
∫ h(1)

s̃m(xm)
s̃f̃m,ω(s̃)ds̃.

There are two substantial differences in this optimal policy from our baseline APM. First,

the policy depends on the joint distribution of agents in the population. Thus, specifying

it ex ante is likely to be extremely challenging in any practical setting. This is necessary

because the marginal rate of substitution between diversity and scores depends on the level

of scores, which depends on the distribution of agents. Second, without assumptions on the

shape of the distribution of agents, there is no guarantee that this policy is monotone and

thus no guarantee that it implements a unique policy.

Thus, while Proposition 6 showed that cross-group separability is largely inessential for

our main conclusions, separability between score and diversity preferences is key to the power

of APM.
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F.3 Non-Differentiable Preferences

In this section, we retain the majority of Assumption 1, where we instead suppose that the

authority’s diversity preferences {um}m∈M are potentially non-differentiable at finitely many

points.

As um is concave, the left and right derivatives of um, u−m and u+
m, exist. The definition

of our first-best APM is not applicable to this case since u′m might not exist. Therefore, we

define the following generalized optimal APM A∗m(ym, s) ≡ h−1(h(s)+u−m(ym)), which simply

replaces u′m with u−m in the definition. By concavity of um, u−m is monotone decreasing. Thus,

this generalized optimal APM (as it is a montone APM) implements a unique allocation by

Proposition 2. Moreover, the unique allocation that it implements is an optimal allocation:

Proposition 8. Let µ∗ denote the allocation implemented by the generalized optimal APM.

µ∗ is an optimal allocation.

Proof. We first prove a claim. An allocation in this setting is a cutoff allocation if there

exists cutoffs {sm}m∈M such that an agent θ is assigned the resource if and only if s(θ) ≥ sm

and m(θ) = m.

Claim 15. There exists a unique optimal allocation µ′ in the sense that all other allocations

that attain the optimal payoff differ from µ′ on at most a measure zero set of types. Moreover,

there exists an optimal allocation that is a cutoff allocation.

Proof. In the setting of Theorem 1, observe that s̃m(xm) is strictly decreasing in xm. This,

together with the concavity of u implies that the objective is strictly concave and constraints

are linear. Therefore an optimal allocation exists and is unique up to measure zero trans-

formations. Given this allocation µ′ (with measures xm), an optimal cutoff allocation is

obtained by the cutoff scores s∗m that satisfy

s′m = sup

{
sm ∈ [0, 1] :

∫ 1

sm

f̃m(s̃)ds̃ = xm

}
(119)

Using this claim, toward a contradiction, assume there exists another allocation µ′, which

gives the authority a strictly higher utility. Moreover, take µ′ to be an optimal cutoff alloca-

tion (which must exist by the claim). As µ′ differs from µ∗ and both are cutoff allocations,

we have that there exist two groups m,n ∈M such that: (i) s′m > s∗m and x′m < x∗m and (ii)

s′n < s∗n and x′n > x∗m. We have that:

A∗m(x, s) ≥ A∗m(x∗m, s) > A∗m(x∗m, s
∗
m) ≥ A∗n(x∗n, ŝ) ≥ A∗n(x̂, ŝ) (120)
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for all s ∈ (s∗m, s
′
m), ŝ ∈ (s′n, s

∗
n), x ≤ x∗m, x̂ ≥ x∗n. The first inequality follows by concavity

of um, the second follows by the fact that h is strictly increasing, the third follows by the

definition of APM and the fact that µ∗(s∗m,m) = 1 and µ∗(ŝ, n) = 0, and the fourth follows

from concavity of un. Thus, we have that, for all s ∈ (s∗m, s
′
m), ŝ ∈ (s′n, s

∗
n), x ≤ x∗m, x̂ ≥ x∗n:

u−m(x) + h(s) > u−n (x̂) + h(ŝ) (121)

Thus, the total marginal utility obtained by replacing any positive measure type m students

with scores s ∈ (s∗m, s
′
m) with an identical measure of type n students with scores ŝ ∈ (s′n, s

∗
n)

is positive. But this contradicts the optimality of µ′. Thus, if µ̃ is optimal, then µ̃ = µ∗ (up

to a measure zero set).

F.4 Non-Concave Preferences

In this section, we relax the assumption that the um are concave.

Proposition 9. If µ is an optimal allocation, then µ is implemented by A∗.

Proof. Without concavity, the optimal allocation characterized in the proof of Theorem 1 is

no longer unique. However, the Lagrangian conditions we have derived are still necessary

for any optimal allocation x = {xm}m∈M. Thus, any optimal allocation is implemented by

A∗.

This result shows that any optimal allocation is implemented by the optimal APM.

However, when {um}m∈M are not concave, A∗ is not necessarily monotone. Therefore, A∗

does not necessarily implement a unique allocation. Indeed, it is possible that A∗ implements

suboptimal allocations, as it will implement any locally optimal allocation. Therefore, a

mechanism defined by an arbitrary selection from the allocations implemented by A∗ would

not be first-best optimal. However, A∗ may still help decision-making in this setting as it

implements any optimal allocation.

G Extension of the Main Results to Discrete Economies

In this Appendix, we extend the results in the main text to discrete economies and thereby

establish that our analysis generalizes from the continuum framework. Concretely, we show

that appropriate analogs of Theorems 1, 2, 5 and Proposition 3 carry over to discrete

economies. As discrete economies do not necessarily admit a unique stable matching, The-

orems 3 and 4 do not generalize. As Theorem 6 relies on convex optimization techniques, it

also does not generalize as written to a discrete setting.
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G.1 Primitives

An authority has q resources to allocate. At each state ω, the economy the authority faces

corresponds to agents Θω = {θ1, . . . , θN(ω)} where q ≤ |N(ω)|. As in the continuum case,

θ ∈ [0, 1] ×M denotes the type of an agent who has score s and belongs to group m. We

denote the score and group of any type θ by s(θ) and m(θ), respectively. For simplicity, we

assume that no two agents have the same score at any ω, formally, if {θ, θ′} ⊆ Θω, then

s(θ) 6= s(θ′).

An allocation µ : Θ → {0, 1} specifies for any type θ ∈ Θ whether they are assigned to

the resource. The set of possible allocations is U and Ω is the set of all possible economies.

An allocation is feasible if it allocates no more than measure q of the resource. A mechanism

is a function φ : Ω→ U that returns a feasible allocation for any possible Θω.

The authority believes ω has distribution Λ ∈ ∆(Ω). x(µ, ω) = {xm(µ, ω)}m∈M denotes

the number of agents of each group allocated the resource at matching µ, while s̄h(µ, ω) =∑
θ∈Θω µ(θ)h(s(θ)) denotes the utility the authority derives from scores at µ. The preferences

of the authority are given by ξ : R|M|+1 → R:

ξ (s̄h, x) ≡ s̄h +
∑
m∈M

um(xm) (122)

where h is continuous and strictly increasing and um is concave for all m ∈M.

G.2 Optimal Mechanisms in Discrete Economies

We adapt our definition of the Adaptive Priority Mechanisms to the discrete setting. An

adaptive priority policy A = {Am}m∈M, where Am : R × [0, 1] → R. The adaptive priority

policy assigns priority Am(ym, s) to an agent with score s in group m when ym of agents of the

same group is allocated the object. Given an adaptive priority policy, an APM implements

allocations in the following way:

Definition 10 (Adaptive Priority Mechanism). An adaptive priority mechanism, induced by

an adaptive priority A, implements an allocation µ in state ω if the following are satisfied:

1. Allocations are in order of priorities: µ(θ) = 1 if and only if

(i) for all θ′ with m(θ′) 6= m(θ) and µ(θ′) = 0,

Am(θ)(xm(θ)(µ, ω), s(θ)) ≥ Am(θ′)(xm(θ′)(µ, ω) + 1, s(θ′)) (123)

(ii) for all θ′ with m(θ′) = m(θ) and µ(θ′) = 0, s(θ) > s(θ′)
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2. The resource is fully allocated: ∑
m∈M

xm(µ, ω) = q (124)

Definition 10 makes two modifications relative to the continuum model. First, the mea-

sures of agents from each group are replaced by the number of agents from each group.

Second, when m(θ) 6= m(θ′), the adaptive priority of θ′ is now evaluated in the case where

an extra agent from m(θ′) is assigned the resource.35 Unlike the continuum case, it is possible

for a monotone APM to implement two different allocations, since it can assign the same

priority to two different agents, which could happen only for a zero-measure set of agents in

the continuum model.

Define A∗m(ym, s) ≡ h(s) + um(ym)− um(ym − 1), which will turn out to be the optimal

APM. We first show that A∗ is monotone, and all allocations that A∗ implements give the

authority the same utility.

Lemma 3. A∗ is monotone. Moreover, if A∗ implements µ and µ′ 6= µ in state ω, then

ξ(µ, ω) = ξ(µ′, ω).

Proof. Monotonicity is immediate from the definition of A∗ and concavity of um. Assume

that A∗ implements two different allocations, µ and µ′ at ω. Let xl and x′l denote the number

of group l ∈M agents assigned the resource at µ and µ′. Since A∗ is monotone and µ 6= µ′,

there are m and n such that xm > x′m and x′n > xn. Let θ̃l and θ̃′l denote the lowest-scoring

type l agent assigned the resource at µ and µ′, respectively. Similarly, let θ̂l and θ̂′l denote

the highest-scoring type l agents who is not assigned the resource at µ and µ′, respectively.

Let µ̃ denote the matching given by: µ̃(θ) = µ(θ) if θ 6∈ {θ̃m, θ̂′n}, µ̃(θ̃m) = 0 while µ(θ̂n) = 1.

µ̃ starts with µ, takes the resource away from the lowest-scoring group m agent who has it,

θ̃m, and allocates it to the highest-scoring group n agent who does not have it, θ̂n. Note

that since A∗ is monotone, from xm > x′m and x′n > xn, under µ′, θ̂n is already allocated the

resource while θ̃m is not.

Claim 16. µ̃ is implemented under A∗ in state ω and ξ(µ, ω) = ξ(µ̃, ω).

Proof. Since A∗ implements µ and µ(θ̂n) = 0, we have that A∗m(s(θ̃m), xm) ≥ A∗n(s(θ̂n), xn +

1). Conversely, since A∗ also implements µ′ and µ′(θ̂′m) = 0, we have that A∗n(s(θ̃′n), x′n) ≥
A∗m(s(θ̂′m), x′m + 1). Moreover, since xm > x′m and x′n > xn, we have that s(θ̂′m) ≥ s(θ̃m) and

s(θ̂n) ≥ s(θ̃′n) . From this, it follows that:

A∗n(s(θ̂n), xn + 1) ≥ A∗n(s(θ̃′n), xn + 1) ≥ A∗n(s(θ̃′n), x′n)

≥ A∗m(s(θ̂′m), x′m + 1) ≥ A∗m(s(θ̂′m), xm) ≥ A∗m(s(θ̃m), xm)
(125)

35This was not the case in the continuum model since all types of agents have measure 0 and therefore
replacing θ with θ′ has no effect the evaluation of diversity.
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where the first inequality holds as s(θ̂n) ≥ s(θ̃′n), the second inequality holds as x′n > xn

(which implies x′n ≥ xn+1) and A∗n is decreasing in its second argument, the third inequality

holds as A∗ also implements µ′ (as stated above), the fourth inequality holds as x′m < xm

(which implies x′m + 1 ≤ xm) and A∗n is decreasing in its second argument, and the fifth

inequality holds as s(θ̂′m) ≥ s(θ̃m). Thus, A∗m(s(θ̃m), xm) ≤ A∗n(s(θ̂n), xn + 1). This shows

that A∗m(s(θ̃m), xm) = A∗n(s(θ̂n), xn + 1), which implies that µ̃ is implemented under A∗ and

ξ(µ, ω) = ξ(µ̃, ω).

Note that Claim 16 shows that starting from a matching µ which is implemented by A∗,

taking away the object from a particular agent who does not have it in µ′ and allocating it

to a particular agent who has it in µ′, we arrive at another matching µ̃ that is implemented

under A∗ and gives the authority the same payoff. Therefore, starting from any µ that is

implemented by A∗ and repeating this construction (by replacing µ at step i with µ̃ at step

i−1) where at each step we take the resource from an agent who is not allocated the resource

at µ′ and assign it to an agent who is, in finitely many steps we arrive at µ′. Since the payoff

stays the same at each step, µ′ gives the authority the same payoff as µ.

Theorem 7. If µ is implemented by A∗, then µ is an optimal matching.

Proof. First, note that an optimal matching exists since the economy (and therefore the set

of matchings) is finite. We first show the following lemma.

Lemma 4. If µ is not implemented by A∗, then there exists µ′ that gives the authority a

strictly higher payoff.

Proof. If µ is not implemented by A∗, then there exists θ and θ′ such that µ(θ) = 0, µ(θ′) = 1

and either m(θ) = m(θ′) and s(θ) > s(θ′) or m(θ) 6= m(θ′) and

h(s(θ)) + um(θ)(xm(θ)(µ) + 1)− um(θ)(xm(θ)(µ)) >

h(s(θ′)) + um(θ′)(xm(θ′)(µ))− um(θ′)(xm(θ′)(µ)− 1)
(126)

However, in both cases, a µ′ that allocates the resource to θ instead of θ′ (while not changing

any other agent’s matching) strictly improves the utility of the authority.

Lemma 4 proves that the optimal matching cannot be a matching that is not implemented

by A∗. Since the optimal matching exists, then it is implemented by A∗. From Lemma 3, all

matchings implemented by A∗ give the authority the same payoff, proving the result.

Note that Lemma 3 and Theorem 7 imply that any mechanism that is defined by an

arbitrary singleton selection from the set of matchings that A∗ implements would achieve

the optimal matching under any ω and therefore would be first-best optimal.
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G.3 Priorities vs. Quotas in Discrete Economies

Now, we define Priority and Quota Mechanisms in the discrete model and extend our

(sub)optimality results to discrete economies.

A priority policy P : Θ→ [0, 1] awards an agent of type θ ∈ Θ a priority P (θ).

Definition 11 (Priority Mechanisms). A priority mechanism, induced by a priority policy

P , allocates the resource in order of priorities until measure q has been allocated, with ties

broken uniformly and at random.

A quota policy is given by (Q,D), whereQ = {Qm}m∈M andD :M∪{R} → {1, 2, . . . , |M|+
1} is a bijection. The vector Q reserves Qm objects for agents in group m, with residual

capacity QR = q−
∑

m∈MQm open to agents of all types. The bijection D (often called the

precedence order) determines the order in which the groups are processed.

Definition 12 (Quota Mechanisms). A quota mechanism, induced by a quota policy (Q,D),

proceeds by allocating QD−1(k) objects to agents from group D−1(k) (if there are sufficient

agents from this group) to the resource in ascending order of k, and in descending order of

score within each k. If there are insufficiently many agents of any group to fill the quota, the

residual capacity is allocated to a final round in which all agents are eligible.

We also extend the definitions of risk-neutrality and high risk aversion to the discrete

setting. Authority preferences are non-trivial if for all m,n ∈M:

h(1) + (un(1)− un(0)) > h(0) + (um(q)− um(q − 1)) (127)

The authority is risk-neutral if for all m ∈M, um(x) = cmx for some cm ≥ 0 and all x ∈
{0, 1, . . . , q}. Define ũ and h̃ as follows: there exists xtar

m such that ũm(xm+1)−ũm(xm) = 0 for

all xm ≥ xtar
m and ũm(xm+1)−ũm(xm) ≥ h(1)−h(0) for xm < xtar

m and where
∑

m∈M xtar
m ≤ q.

Let ξ̃ denote the preferences of the authority under ũ and h̃. The authority with preferences

ξ is extremely risk-averse if the set of optimal allocations under ξ and ξ̃ coincide for all ω.

Theorem 8. The following statements are true:

1. If there is no uncertainty, then there exist first-best priority and quota mechanisms.

2. Suppose that the authority has non-trivial preferences. There exists a first-best priority

mechanism if and only if the authority is risk-neutral. This mechanism is given by

P (s,m) = s+ um(1)− um(0).

3. Suppose that the authority has non-trivial preferences. There exists a first-best quota

mechanism if and only if the authority is extremely risk-averse. This mechanism is

given by Qm = xtarm and D(R) = |M|+ 1.
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Proof. Part (1):

Claim 17. Let µ denote an optimal allocation at ω. Then µ is a cutoff matching.

Proof. If µ is not a cutoff matching, then there exists (s,m) and (s′,m) where µ(s,m) = 1,

µ(s′,m) = 0 and s′ > s. Define µ′ by setting: µ′(s,m) = 0, µ(s′,m) = 1 and µ(s̃, m̃) =

µ(s̃, m̃) for all (s̃, m̃) such that (s̃, m̃) 6∈ {(s,m), (s′,m)}. Observe that, ξ(µ′, ω)− ξ(µ, ω) =

s′ − s > 0. Therefore, µ is not an optimal allocation, which is a contradiction.

Let µ denote an optimal allocation under ω, {ŝm(µ, ω)}m∈M denote the cutoff scores at

µ and s∗ denote an arbitrary number. Any priority policy that assigns P (ŝm(ω),m) = s∗

for all m ∈ M and is strictly increasing in the first argument allocates the resource to any

agent who has a higher score than the cutoff for their group and implements the optimal

allocation.

Let xm denote the number of group m agents who are allocated the resource at an optimal

allocation under ω. Then a quota policy that sets Qm = xm allocates the resource to any

agent who has a higher score than the cutoff for their group and implements the optimal

allocation.

Part (2): The if part of the result follows from observing the priority policy P (s,m) =

s+ um(1)− um(0) is equivalent to the optimal APM A∗ under risk neutrality since um(1)−
um(0) = um(ym+1)−um(ym) for all m, ym. Thus, by Theorem 7, P (s,m) = s+um(1)−um(0)

is first-best optimal.

To prove the only if part, assume risk neutrality does not hold and let m denote a group

such that um does not satisfy risk neutrality. For a contradiction, assume that P is an

optimal priority policy. First, we observe that P (s,m) must be strictly increasing in s for all

m. To see why, assume P (s,m) = P (s′,m) where s > s′ and just consider an ω where there

are q − 1 group m agents with scores strictly higher than s, and no other agents. Clearly,

the optimal allocation would be to allocate the resource to all agents but (s′,m), while P

allocates the resource to (s′,m) with at least probability 1/2.

Second, let m denote a group such that um does not satisfy risk neutrality. Take another

arbitrary group n. We have the following:

Claim 18. Either (i) there exists t < q, sm, sn such that

um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn) (128)

or (ii) there exists t < q such that

um(t+ 1)− um(t) + h(1) < un(q − t)− un(q − t− 1) + h(0) (129)

um(t)− um(t− 1) + h(0) > un(q − t+ 1)− un(q − t) + h(1) (130)
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Proof. From non-triviality, we know that um(1) − um(0) + h(1) > un(q) − un(q − 1) + h(0)

and un(1)− un(0) + h(1) > um(q)− um(q − 1) + h(0). The result then follows from the fact

that h is continuous and strictly increasing and um and un are concave.

We first prove the result under case (ii). Fix two agents with scores sm ∈ (0, 1), who

belong to group m and sn ∈ (0, 1), who belong to group n. Assume that there are t − 1

group m agents and q − t group n agents with higher scores than max{sn, sm}, so a total of

t group m agents and q − t + 1 group n agents. Note that in this case, only one agent will

not be allocated the resource in the optimal allocation, and that would be either (sm,m) or

(sn, n). From equation 130, (sm,m) is more preferred than (sn, n) and therefore it must be

that P (sn, n) < P (sm,m), as otherwise P would not be optimal. Next, assume that there

are t group m agents and q − t − 1 group n agents with higher scores than max{sn, sm}.
From equation 129, (sn, n) is more preferred than (sm,m) and therefore it must be that

P (sm,m) < P (sn, n), which is a contradiction.

We now prove the result under case (i).

Claim 19. In case (i), any optimal priority policy P must satisfy P (sm + ε,m) > P (sn, n)

for all ε > 0 and P (sm − ε,m) < P (sn, n) for all ε > 0

Proof. From Equation 128, we see that when there are t group m agents and q − t − 1

group n agents with higher scores, (sm+ ε,m) is strictly preferred to (sn, n), which is strictly

preferred to (sm − ε,m).

Since um is not linear, there exists an l such that um(l+ 1)− um(l) < um(l)− um(l− 1).

There are two possibilities: l ≤ t or l > t. First, suppose that l ≤ t. We have that:

um(l)−um(l−1)+h(sm) > um(l+1)−um(l)+h(sm) ≥ un(q−l)−un(q−l+1)+h(sn) (131)

where the first inequality follows from um(l+ 1)− um(l) < um(l)− um(l− 1) and the second

inequality follows as um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn), um and

un are concave, and l ≤ t. Thus, for sufficiently small ε > 0, we have that:

um(l)− um(l − 1) + h(sm − ε) > un(q − l)− un(q − l + 1) + h(sn) (132)

Given this inequality, we see that when there are l − 1 group m agents and q − l group n

agents with higher scores, (sm − ε,m) is strictly preferred to (sn, n). Thus, to implement

the optimal allocation, it must be that P (sm − ε,m) ≥ P (sn, n), which is a contradiction to

Claim 19.

Second, suppose that l > t. We know that:

um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn) (133)
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As l > t, from concavity of um and un,

um(l)− um(l − 1) + h(sm) ≤ un(q − l + 1)− un(q − l) + h(sn) (134)

From concavity of un and um:

um(l + 1)− um(l) + h(sm) < un(q − l)− un(q − l − 1) + h(sn) (135)

Thus, for sufficiently small ε > 0, we have that:

um(l + 1)− um(l) + h(sm + ε) < un(q − l)− un(q − l − 1) + h(sn) (136)

Given this inequality, we see that when there are l group m agents and q − l − 1 group n

agents with higher scores, (sn, n) is strictly preferred to (sm + ε,m). Thus, to implement

the optimal allocation, it must be that P (sm + ε,m) ≤ P (sn, n), which is a contradiction to

Claim 19.

Part (3): To prove the if part, fix an ω and let µ∗ denote the optimal allocation under ω.

Let x∗m denote the number of group m agents allocated the resource at µ∗ and xm(ω) denote

the total number of group m agents under ω.

Claim 20. If the authority is extremely risk-averse, then x∗m ≥ min{xm(ω), xtarm }

Proof. Assume for a contradiction this is not the case. Then x∗m < xm(ω) and x∗m < xtarm .

Since
∑

m∈M xtarm ≤ q and x∗m < xtarm , there exists n ∈ M such that x∗n > xtarn . Let sn

denote the score of the lowest-scoring group n agent who is allocated the resource, and let

sm denote the score of any group m agent who is not allocated the resource, which exists as

x∗m < xm(ω). Since the authority is extremely risk-averse, we have the following:

h(sm) + um(x∗m + 1)− um(x∗m) > h(sn)− un(x∗n) + um(x∗n − 1) (137)

However, this contradicts the optimality of µ∗ and proves the claim.

Claim 21. If the authority is extremely risk-averse, x∗m > xtarm and x∗n > xtarn , µ∗(s,m) = 0

and µ∗(s′, n) = 1, then s′ > s.

Proof. Assume for a contradiction that s > s′.36 The difference in the utility of the authority

when allocating the resource to (s,m) rather than (s′, n) is given by

h(s) + um(x∗m + 1)− um(x∗m)− (h(s′)− un(x∗n) + um(x∗n − 1)) = h(s)− h(s′) > 0 (138)

which is a contradiction to optimality of µ∗.

The previous two claims show that under any ω, the optimal allocation admits (i) the

highest-scoring xtarm agents from each group (provided that they exist) and (ii) highest-scoring

36Remember that s′ = s was ruled out by assumption.
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agents who are not in (i), until the capacity is exhausted. Clearly, the quota policy Qm = xtar
m

and D(R) = |M|+ 1 implements this outcome at every ω.

To prove the only if part, assume that {Qm}m∈M is part of an optimal quota policy.

Claim 22. For and each m,n ∈M and any t, l such that t ≤ Qm, Qm > 0 and l ≥ Qn, we

have that:

um(t)− um(t− 1) + h(0) ≥ un(l + 1)− un(l) + h(1) (139)

Proof. Assume that at ω, there are t group m agents, one of which one has score 0 and l+ 1

group n agents with scores higher than 1 − ε1 and q agents from other groups who have

scores higher than 1− ε2, where ε1 > ε2 > 0. As t ≤ Qm and Qn < l + 1, t group m agents

and Qn < l+ 1 group n agents are admitted under Q. Since Q is optimal for all ε1, we must

have that:

um(t)− um(t− 1) + h(0) ≥ un(l + 1)− un(l) + h(1− ε1) (140)

The statement then follows from continuity of h by taking the limit ε1 → 0.

Claim 23. Merit slots are processed last at the optimal quota policy.

Proof. For a contradiction, assume there is a merit slot that is processed before a quota slot.

Let l denote the last merit slot that precedes a quota slot. Let m denote a group that has a

quota slot after l. We consider a state in which: (i) there are q group n agents with scores

ŝ− εi, where εi > 0 for all i ∈ {1, . . . , q} (let ŝ denote the score of the highest-scoring agent

from this group), (ii) there are Qm group m agents with scores ŝ + εj for j ∈ {1, . . . , Qm}
(let ŝ denote the score of lowest-scoring agent from this group) and one with score ŝ/2, and

(iii) q agents from other groups with scores in (ŝ, ŝ). A group m agent with score ŝ+ εk for

some k is matched to l, thus (ŝ/2,m) is matched to a later quota slot, while some agents

with type (ŝ − εj, n) are rejected for some j. Let ŝ − εj′ be the score of the highest-scoring

such agent. From the optimality of the quota policy we have that

um(Qm + 1)− um(Qm) + h(ŝ/2) ≥ un(Qn + 1)− un(Qn) + h(ŝ− εj′) (141)

Let s∗ be the score of the lowest-scoring group n agent (i.e., s∗ = mini∈{1,...,q} ŝ− εi). Next,

consider the modified version of the above state, all group n agents are the same, but all

of the other Qm group m agents as well as q agents from other groups now have scores in

(s∗ − ε̂, s∗) and the group m agent who had a score of ŝ/2 now has a score of ŝ/2 + ε̂ for

ε̂ > 0. Note that now the group n agent with score ŝ− εj′ is allocated the slot l or an earlier

slot, while the agent (ŝ/2 + ε̂, m) is not allocated to any slot. Thus

um(Qm + 1)− um(Qm) + h(ŝ/2 + ε̂) ≤ un(Qn + 1)− un(Qn) + h(ŝ− εj′) (142)

79



which, since h is strictly increasing, implies that um(Qm + 1)− um(Qm) + h(ŝ/2) < un(Qn +

1)− un(Qn) + h(ŝ− εj′). This contradicts Equation 141, proving the claim.

Given the previous two claims, the following claim proves the result.

Claim 24. If merit slots are processed last, then for all l ≥ Qm and j ≥ Qn

um(l + 1)− um(l) = un(j + 1)− un(j) (143)

Proof. Assume for a contradiction this does not hold. Without loss of generality, assume

um(l + 1)− um(l) > un(j + 1)− un(j) and define δ as

δ = (um(l + 1)− um(l))− (un(j + 1)− un(j)) (144)

Consider a state with q − 1 agents with scores higher than s∗, of which exactly Qm are

group m agents and Qn are group n agents. Moreover, there is one more group m agent with

score s′ < s∗ (denote this agent by θm) and one more group n agent with score s′′ ∈ (s′, s∗)

where h(s′′)−h(s′) < δ (denote this agent by θn). Note that all agents apart from θm and θn

are allocated the resource before the final merit slot. Moreover, since θn has a higher score,

she obtains the final merit slot. However, this is a contradiction to the optimality of Q as

h(s′′)− h(s′) < δ and allocating that resource to θm gives the authority higher utility. This

proves the claim.

Taken together, claims 22 and 24 prove that a fictitious authority that is extremely risk-

averse with xtar
m = Qm agrees with the authority on the optimal allocation, for all ω. To

see this, observe that claim 22 implies that diversity preferences dominate any concern for

scores when a group is allocated less than Qm. Moreover, conditional on being allocated at

least Qm, it is as if there is no residual diversity preference, by claim 24. This proves the

only if part of (3), which finishes the proof of the result.

G.4 Dominance of APM in Discrete Economies

In this section, we extend our discrete model to the multiple authority case and show that

the dominance of the optimal APM in the decentralized admissions setting studied in Section

4.3 can be extended to this setting. Let Θ0 denote the set of agents. C = {c0, c1, . . . , c|C|−1}
denote the set of authorities. qc denotes the capacity of authority c and qc0 ≥ |Θ0|. θ =

(s,m,�) ∈ [0, 1]|C| ×M × R = Θ, where R is set of all complete, transitive, and strict

preference relations over C such that c0 is less preferred than all c ∈ C. For each type θ, sc(θ)

denotes the score of θ at authority c and m(θ) denotes the group of θ.
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A matching in this environment is a function µ : C ∪ Θ → 2Θ ∪ C where µ(θ) ∈ C is the

authority any type θ is assigned and µ(c) ⊆ Θ is the set of agents assigned to authority c,

which satisfies |µ(c)| ≤ qc for all c. xc(µ) = {xm,c(µ)}m∈M denotes the number of agents of

each group assigned to school c at µ while s̄hc(µ) =
∑

θ∈µ(c) h(s(θ)) denotes the score utility

the authority derives from µ. The preferences of the authority are given by:

ξc(s̄hc , xc) = s̄hc +
∑
m∈M

um,c(xm,c) (145)

where hc is continuous and strictly increasing and um,c : R → R is concave for all m ∈ M
and c ∈ C̄.

Agents apply to the authorities sequentially, who decide which agents to admit. We

index the stage of the game by t ∈ T = {1, . . . , |C| − 1}. Each stage corresponds to an

authority I(t), where I : T → T . At each stage t, any unmatched agents choose whether

apply to authority I(t). Given the set of applicants, authority I(t) chooses to admit a subset

of these agents. Given this, histories are indexed by the path of the remaining of agents who

have not yet matched, ht−1 = (Θ0,Θ1, . . . ,Θt−1) ∈ Ht−1. Given each history ht−1 and set of

applicants ΘA
c ⊆ Θ, a strategy for an authority returns a set of agents ΘG

c ⊆ Θ whom they

will admit such that ΘG
c ⊆ ΘA

c and |ΘG
c | ≤ qc for each time at which they could move t ∈ T ,

ac,t : Ht−1 × P(Θ) → P(Θ), where P(Θ) is the power set over Θ. A strategy for an agent

returns a choice of whether to apply to authorities at each history and time for all agent

types θ ∈ Θ, σθ,t : Ht−1 → [0, 1]. We moreover say that a strategy ac̃,t for an authority c̃ at

time t is dominant if it maximizes authority utility regardless of {{ac,t}c∈C/{c̃}, {σθ,t}θ∈Θ}t∈T
and I.

Theorem 9. The APM A∗c is a dominant strategy for all authorities.

Proof. We prove that APM A∗c implements a dominant strategy for all authorities in all stages

by backward induction. Consider the terminal time t = |C| − 1. Some set of agents Θ̂ ⊆ Θ

applies to the authority. Regardless of Θ̂, by Theorem 7 we have that the set of agents chosen

under any selection from APM A∗c is first-best optimal. Thus, A∗c is dominant. Consider

now any time t < |C| − 1, precisely the same argument applies and A∗c is dominant.

G.5 Discrete Model: Example under Imperfect Information

We develop a simple example to show how the qualitative trade-offs between priorities and

quotas we have identified are those present in discrete matching markets. There are 4

students, Θ = {θ1, θ2, θ3, θ4} and one authority c with capacity two. Students θ3 and θ4

belong to an underrepresented minority. The scores of minority students are distributed

independently and uniformly on [0, 1], so that s3, s4 ∼ U [0, 1]. For simplicity, we assume

81



there is no uncertainty over the scores of other students: s1 = s2 = 1.37 We further specify

that the authority has the following utility function:38

W (β, µ) = βI{µ(c) ∩ {θ3, θ4} 6= ∅}+
∑

i:µ(θi)=c

si (146)

This function embodies the main trade-off we have studied: the trade-off between scores and

diversity. The first term indicates that whenever the authority admits at least one minority

student, the utility of authority increases by β, which denotes the strength of affirmative

action or diversity preferences. The second term simply indicates that the authority cares

about scores and wants to admit the highest-scoring students they can. An alternative

interpretation in this context, where allocating to agents with low scores is perceived as

unfair, is that the authority wants to ensure outcomes that are fair in this sense.

The authority implements a stable matching and has two different policies at their dis-

posal to influence the outcome of the matching mechanism. The first is a priority subsidy,

denoted by α ∈ [0, 1]. A subsidy α simply increases the scores of minority students by α

and moves the distribution of scores of minority students to U [α, 1 + α]. The second is a

minority quota Q ∈ {0, 1, 2} that reserves Q seats for minority students.

We start by characterizing the first-best where the authority can choose the matching they

most prefer in each state of the world. Intuitively, if the score of the highest-scoring minority

student is sufficiently high, then the designer prefers to admit her and one of the non-minority

students. Otherwise, it is optimal for the designer to admit the two highest-scoring students,

that is the two non-minority students. The first-best matching µ∗ is therefore given by:

µ∗(c) =

{θ1, θ2} , if maxi∈{3,4} si < 1− β,

{θ1, θk} , if maxi∈{3,4} si > 1− β and sk = maxi∈{3,4} si.
(147)

See that if the authority had perfect information and knew s3 and s4 that both a priority

subsidy and a quota can implement the first-best.39 In particular, if maxi∈{3,4} si > 1 − β,

then both a quota Q = 1 that reserves one seat for minority students and a priority subsidy

for minority students of α ∈ (1 − mini∈{3,4} si, 1 − maxi∈{3,4} si) implement the first-best.

When maxi∈{3,4} si ≤ 1− β, then both a quota of Q = 0 and a subsidy α = 0 implement the

first-best. Thus, with perfect information, both policies yield the first-best and there is no

trade-off for the authority.

37The qualitative result here does not change as long as non-minority students draw their scores from a
distribution that FOSD U [0, 1].

38µ denotes a matching, where µ(c) ⊂ Θ and |µ(c)| = 2. We assume µ is stable, which uniquely determines
the allocations.

39Formally speaking, this is only true outside of the knife-edge case where s3 = s4, which is probability
zero. In this case, there is no subsidy that can implement the first-best.
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We now consider the second best where an authority is constrained to implement a

priority or a quota before the realization of uncertainty. Note that implementing the first-

best is impossible with both quotas and priorities as neither can be adapted to the underlying

realized scores of the minority students. We now solve for the optimal quota and priority

designs and compare their values. In order to characterize the optimal reserve policy, one

first notes that reserving both seats for minority students is always strictly dominated by

reserving only one. Thus the designer only needs to compare a policy with a quota of one

against a policy with no quotas. With no quota, no minority student is admitted and the

utility of the designer Wnr(β) = 2 with probability one. On the other hand, if a quota of one

is used, only the highest-scoring minority student is admitted. Thus, the expected utility of

the designer is:

E[W (β)] = β + 1 + E [max{s3, s4}] =
5

3
+ β (148)

The optimal quota policy is therefore to reserve one seat for minority students if β > 1/3

and reserve no seats otherwise. Moreover, the utility of the designer under the optimal quota

policy is:

VQ(β) =

2 , if β ≤ 1
3
,

5

3
+ β , if β > 1

3
.

(149)

We now compute the optimal priority design and the authority’s value thereof. To this

end, we first calculate the utility of the designer under subsidy α. We start by calculating

the matching conditional on the realized scores. There are three cases to consider. If both

minority students have scores above 1−α, then both of them are admitted to the authority.

If both minority students score below 1 − α, then neither of them is admitted. Lastly, if

one of them scores above 1− α while the other scores below 1− α, then only one minority

student is admitted. The following equation gives the utility of the designer as a function of

β and α:

E[W (β, α)] =

∫ 1

1−α

∫ 1

1−α
(s3 + s4 + β)ds3ds4 + 2

∫ 1

1−α

∫ 1−α

0

(1 + s4 + β)ds3ds4

+

∫ 1−α

0

∫ 1−α

0

2ds3ds4

=− (1 + β)α2 + 2βα + 2

(150)

A quick calculation shows that the optimal subsidy is always interior and α∗ = β
1+β

. Plugging

the optimal subsidy policy into the authority’s payoff function, we obtain:

VP (β) = 1 + β +
1

1 + β
(151)

We now compare the value of the optimal quota and priority designs as the strength of
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Figure 10: Comparative Statics for the Preference Between Priorities and Quotas
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Note: Values of the optimal priority policy, VP , and optimal quota policy, VQ, as a function of the
strength of the diversity preference β. The dashed black line corresponds to β = 1/2 and is the
point at which both policies yield the same value.

the affirmative action motive changes. Comparing VP (β) and VQ(β) shows that the optimal

policy depends on the strength of affirmative action preferences of the authority. Figure 10

plots these two values as a function of the affirmative action motive with the dotted line

giving the value β = 1
2

at which the two value functions cross. Importantly, we see that a

quota policy is optimal whenever β > 1/2 and a priority subsidy policy is optimal whenever

β < 1/2.

This example highlights the main differences between priorities and quotas under uncer-

tainty and suggests when we might expect to prefer one over the other. When the preference

for diversity is low, the authority only wants to admit a minority student if her score is high

enough. In this case, a subsidy is a better policy as its outcome can depend on the relative

scores of the students. In particular, it only admits minority students if they obtain suffi-

ciently high scores while a quota admits minority students equally across states of the world.

Consequently, priority designs generate a desirable positive selection of minority students

which tends to improve scores. However, the drawback of a subsidy policy is that it applies

to all students and can therefore cause either the admission of a second minority student

with a lower average score or fail to admit any minority students. On the other hand, if the

preference for diversity is sufficiently high, then the authority wants to admit one minority

student for sure, regardless of her score. In this case, the subsidy policy is undesirable as

even under the optimal subsidy, there are many realizations where neither or both minority

students are admitted, while the reserve policy ensures that one minority student is admitted

in all states of the world.
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H Implementation, Precedence Orders, and an Illus-

tration from H1-B Visa Allocation

In this appendix, we show that (with no uncertainty) priority and quota policies can imple-

ment the same set of allocations. We apply this insight to study the effect of precedence

orders in US H1-B visa allocation.

H.1 Equivalence of Priorities and Quotas for Implementation

In Proposition 3, we showed that if there is no uncertainty, both priorities and quotas can

achieve the optimal allocation. We say that a priority policy P is monotone if P (s,m) is

strictly increasing in s. Note that since the authority prefers higher-scoring agents to lower-

scoring ones, monotone policies perform better non-monotone policies. We will now show

that, in the setting of Section 3, for a given ω (which we suppress for the rest of this section),

these quota and monotone priority policies are equivalent in the sense that any allocation

that is achieved by one can also be achieved by the other.

Proposition 10. µ is implemented by a quota policy if and only if it is also implemented by

a monotone priority policy.

Proof. Assume that µ is implemented by a quota policy. Then µ is a cutoff allocation since

the resource is allocated in descending order of score. Let sm denote the lowest-scoring agent

from group m who is allocated the object at µ for m ∈M. Let s̄ = maxm∈M sm. Define the

priority policy as P (s,m) = s + (sm − s̄). Note that if µ(s,m) = 1 and µ(s′,m′) = 0, then

s + sm − s̄ > s′ + sm′ − s̄ and therefore P (s,m) > P (s′,m′). As P allocates the resource

to measure q highest-scoring agents under P and measure q of agents who are allocated the

resource under the quota policy has higher priorities than those who are not, P implements

the same allocation as the quota policy.

Conversely, assume that µ is implemented by a monotone priority policy. Let xm denote

the measure of agents from group m allocated the object at µ for m ∈ M. Let Q denote a

quota policy where Qm = xm. Under any processing order, Q implements the same allocation

and allocates the resource to the highest-scoring measure xm agents from group m, for all m.

This is the allocation under P (s,m) since P is a monotone priority policy and allocates the

resource to the highest-scoring measure xm agents from group m, which proves the result.

In the next section, we use this result to provide a diagnostic test for evaluating quota

policies with different precedence orders by the strength of the equivalent priority policy.
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H.2 Application of a Diagnostic Test for the Effect of Precedence

Orders to US H1-B Visa Allocation

In this Appendix, we argue that in light of Proposition 10, priorities can be used as a

diagnostic test for the effect of precedence orders in the context of US H1-B Visa allocation,

which has had historical issues in implementation arising from the choice of precedence

order. The American H1-B visa program enables American companies to temporarily employ

educated foreign workers in high-skill occupations.40 The statutory law enacted by the U.S.

Congress mandates the total number of visas to be granted and The U.S. Customs and

Immigration Service (USCIS) implements this mandate. The visa allocation is governed

by the H-1B Visa Reform Act of 2004 that established an annual system in which 65,000

visas were made available for all eligible applicants and an additional 20,000 visas were

reserved for applicants with advanced degrees. Until 2009, USCIS used the arrival time of

the application to determine priorities. Since then, the priorities are determined according

to a uniform lottery.

As we have emphasized, under quota policies, specifying the processing order is critical.

Between 2009 and 2019, USCIS used a Reserve-Initiated processing rule. In 2020, in accor-

dance with the 2017 Buy American and Hire American Executive Order, USCIS switched

to a Unreserved-Initiated rule, in order to award visas to the most-skilled workers. Pathak,

Rees-Jones, and Sönmez (2022) document this switch and give a detailed account of the

consequences. In particular, they calculate the effect of this change on visa allocation be-

tween 2013-2017. They find that from (on average) 55,900 applicants with advanced degrees,

33,495 of them obtain a visa under the Reserve-Initiated rule, while 38,843 of them obtain a

visa under the Unreserved-Initiated rule. This fact underscores how the complexity of quota

policies can lead to issues in implementation, even in the simplest case with two groups.

We now use the structure of Proposition 10 to provide a diagnostic test that authorities

can use to see the degree of effective affirmative action when employing a quota policy and

apply it to the H1-B and Boston Public Schools settings.41 Concretely, when an authority is

considering designing its precedence order, it can simply compute the implied priority subsidy

being afforded to each group. In the context of H1-B allocation, we assume the uniform

40See Pathak, Rees-Jones, and Sönmez (2022) for a detailed account of H-1B policies and reforms.
41We note that the H-1B lottery is a setting where the perfect information assumption is justified. First,

the only object that is allocated is the visa and all applicants prefer obtaining the visa to not obtaining it.
This removes any uncertainty over the preferences of the individuals. Second, the priorities are determined
according to a uniform random lottery and the market is large. In particular, between 2013 and 2017,
each year, 85,000 visas are allocated to an average of 137,017 reserve ineligible and 55,900 reserve eligible
applicants. Thus, although there is uncertainty at the individual level, the distribution of lottery numbers
conditional on reserve eligibility is essentially fixed.
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Table 2: Equivalent Priorities for Different Precedence Orders

# Applicants # Reserve-eligible Visas
General Reserve-eligible R-I Rule NR-I Rule

5-yr Average (2013-2017) 137,017 55,900 33,495 38,834
Equivalent Subsidy (α) 23 35

Note: Allocation of H-1B visas under Reserve-Initiated and Nonreserve-Initiated rules along with
the equivalent subsidies that would induce these allocations.

random lottery of USCIS is implemented by drawing a number uniformly from the interval

[0, 100]. In the counterfactual priority mechanism, there are no quotas for reserve category

applicants, but they get a score subsidy of α, i.e. their random numbers are distributed

uniformly on [α, 100+α]. Computing the implied α under both processing orders to compare

the policies, we obtain Table 2. Note that even though both quota policies correspond to

20,000 visas being reserved for applicants with advanced degrees, there is an important

difference in the number of visas allocated to advanced degree applicants and therefore in

the subsidy required to achieve that allocation. In particular, the Unreserved-Initiated order

leads to a 12-point subsidy increase relative to the Reserve-Initiated benchmark.
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