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Abstract

To study the equilibrium implications of decision frictions, we introduce a new class of control costs 
in continuum-player, continuum-action games in which agents interact via an aggregate of the actions of 
others. The costs that we study accommodate a rich class of decision frictions, including ex post misop-
timization, imperfect ex ante planning, cognitive constraints that depend endogenously on the behavior of 
others, and consideration sets. We provide primitive conditions such that equilibria exist, are unique, are ef-
ficient, and feature monotone comparative statics for action distributions, aggregates, and the size of agents’ 
mistakes. We apply the model to make robust equilibrium predictions in a monetary business-cycle model 
of price-setting with planning frictions and a model of consumption and savings during a liquidity trap 
when endogenous stress worsens decisions.
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1. Introduction

People commonly make mistakes that affect others. Consider a monopolistically competitive 
firm choosing its price to maximize profits, taking into account projected demand and competi-
tors’ prices. The complexity of firms’ decision-making processes makes clear that even though 
the problem is well-defined and an ideal solution surely exists, determining that solution is dif-
ficult. Thus, firms may fail to set the optimal price. Such a deviation from the ideal price may 
affect all other competitors’ benefits from setting the right price—for instance, by altering the 
residual demand that they face. Moreover, the pricing of other firms may directly influence the 
costs of setting the right price—for instance, if tough competition induces managerial stress that 
contributes to worse decision-making. Thus, observed pricing arises from a process of strate-
gic mistakes: the combination of imperfect optimization and strategic interaction that may affect 
both the benefits and the costs of precise decision-making.

To study such strategic mistakes, this paper introduces a model of non-parametric, state-
dependent stochastic choice in continuum-player games with a continuum of actions. Agents’ 
payoffs depend on their own action, an exogenous state, and a one-dimensional aggregate of 
the cross-sectional distribution of others’ actions. Such a setting is ubiquitous in macroeconomic 
models of price-setting (Woodford, 2003; Maćkowiak and Wiederholt, 2009; Costain and Nakov, 
2019), production (Angeletos and La’O, 2010, 2013; Benhabib et al., 2015; Chahrour and Ul-
bricht, 2023), and beauty-contest games more generally (Morris and Shin, 2002; Angeletos and 
Pavan, 2007; Bergemann and Morris, 2013; Huo and Pedroni, 2020).

Agents face a problem of costly control: conditional on their conjecture for fundamentals and 
others’ actions, they pick a stochastic choice pattern that trades off playing the best actions with 
a cost that penalizes playing too precisely. We introduce a new family of control cost functionals 
that are state-separable, i.e., total control costs are additive over states. These costs allow us 
to model several kinds of decision frictions that have not previously been jointly studied. The 
first is ex post misoptimization, as in the literatures on control costs (Stahl, 1990; Van Damme, 
1991) and quantal response equilibrium (McKelvey and Palfrey, 1995; Goeree et al., 2016), in 
which agents’ imprecise play responds to strategic incentives within a given state of the world. 
The second is ex ante planning frictions, as in the literature on costly information acquisition 
in games (see e.g., Yang, 2015; Morris and Yang, 2022; Hébert and La’O, 2022; Denti, 2023), 
whereby agents must weigh the benefits of precise planning for a state with the cost of that 
state never being realized. The third is exogenous and endogenous state-dependence in control 
costs, as in Hébert and La’O (2022) and Angeletos and Sastry (2023). The fourth is equilibrium 
determination of agents’ consideration sets, i.e., the subset of actions that they play, as in Matějka 
(2015) and Stevens (2019).

We show that, despite the rich behavioral patterns that our model accommodates, equilibrium 
analysis remains tractable. Concretely, we provide four theoretical results that provide conditions 
for equilibrium existence, uniqueness, efficiency, and monotone comparative statics for actions, 
aggregates, and the size of agents’ mistakes.

Toward establishing the existence and uniqueness of equilibrium, we first characterize equi-
librium as a functional fixed-point equation for the cross-sectional distribution of actions and 
provide primitive conditions under which this equilibrium fixed-point operator is a contraction. 
This result follows from showing first that agents’ state-dependent stochastic choice rules are 
monotone, i.e., they are increasing in the sense of first-order stochastic dominance when ag-
gregate actions are higher, and discounted, i.e., increasing aggregate outcomes has a less than 
one-for-one effect on agents’ stochastic best replies. This requires three primitive conditions: 
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(i) that agents’ actions and aggregates are jointly complementary for physical payoffs and the 
psychological costs of precise optimization; (ii) that this complementarity is dominated by the 
concavity of agents’ physical payoffs relative to their psychological costs; and (iii) a technical 
restriction on the shape of agents’ cost functionals that allows us to translate dominance in payoff 
units into first-order stochastic dominance in the space of stochastic choice rules. Moreover, we 
show that the last of these assumptions is satisfied under the two leading cost functions in the 
control costs literature: entropic and quadratic costs. Second, we show that, if the equilibrium ag-
gregator is (i) increasing in agents’ actions and (ii) such that level shifts of the action distribution 
have less than one-for-one effects on aggregates, then the equilibrium fixed-point operator is a 
contraction. These assumptions on aggregation are satisfied under common aggregators, such as 
those that take the mean or the median of the cross-sectional action distribution. Finally, since the 
equilibrium operator is a contraction, the existence and uniqueness of equilibrium (Theorem 1) 
follows.

We next study equilibrium comparative statics. First, if actions, aggregates, and the state are 
jointly complementary for agents’ physical payoffs and psychological costs, then the unique 
equilibrium action distribution and aggregate are monotone in the state (Theorem 2). Under a 
further condition that payoffs depend only on the distance between one’s own action and some 
optimal action, we show that the size of agents’ mistakes is monotone in the state when the 
ratio between the stakes of misoptimization and the cost of precise optimization is monotone in 
endogenous and exogenous states (Theorem 3).

Turning to normative analysis, we provide a necessary condition for the efficiency of the 
unique equilibrium: the average marginal physical benefit of increasing the aggregate action 
must equal the average marginal psychological cost of so doing (Theorem 4).

We finally employ our results in two macroeconomic applications. The first application is 
to price-setting in a monetary economy à la Woodford (2003) and Hellwig and Venkateswaran 
(2009), but where firms face ex ante planning frictions: firms must plan for what prices to set 
across contingencies for the realized level of the money supply and inflation. We derive and 
interpret conditions under which the aggregate price level, the distribution of prices, and the 
dispersion of prices are monotone increasing in an exogenous shock to the money supply in the 
unique equilibrium. We use these results to give a costly-planning explanation for the empirical 
finding that there is a positive relationship between price dispersion and aggregate inflation at 
rare and high, but not common and low, levels of inflation (Alvarez et al., 2019; Nakamura et 
al., 2018). The key mechanism is that firms set more dispersed prices in rare, highly inflationary 
states, because they did not invest many resources into forming precise plans for these unlikely 
states.

The second application is to consumption and savings in a liquidity trap, in which agents’ 
incomes directly influence cognitive function. This is motivated by the experimental finding that 
individuals make worse decisions when they are poor (Mani et al., 2013) and the survey finding 
that individuals report being significantly distracted when near financial constraints (Sergeyev et 
al., 2022). We derive and interpret conditions under which the unique equilibrium features ag-
gregate output and a consumption distribution that is monotone increasing in aggregate demand, 
while consumption dispersion decreases in aggregate demand as agents become less cognitively 
constrained. We show that this economy features a novel externality: when aggregate output is 
lower, agents’ decision costs are higher, and they make larger consumption and savings mistakes. 
This mechanism provides a new explanation for the finding that consumption dispersion rises in 
downturns (Berger et al., 2023), in our case because of the equilibrium effect of low income 
causing stress that worsens decisionmaking.
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We discuss two extensions of our analysis in the Appendix. First, in Appendix B, we provide 
a detailed comparison of our model with the mutual information model of Sims (2003). Using 
a numerical example of a linear beauty contest (Morris and Shin, 2002), we observe that the 
mutual information model does not imply monotone and discounted stochastic choice rules and 
therefore opens the door to multiple equilibria defined by coordination on specific support points 
for the action distribution. This analysis provides a direct counter-example to the possibility that 
equilibrium analysis similar to ours is possible in workhorse models of unrestricted information 
acquisition and illustrates the tractability advantage that our model may have for specific applica-
tions. Second, in Appendix C, we study strategic mistakes in binary-action coordination games, 
which are also ubiquitous in macroeconomics and finance (Angeletos and Lian, 2016). We derive 
sufficient conditions on cognitive costs and payoffs to ensure unique and monotone equilibria and 
illustrate our results in a canonical investment game with linear payoffs (as in Yang, 2015).

Related literature. The main contribution of our paper is to provide a unified equilibrium anal-
ysis of a wide variety of decision frictions—including ex post misoptimization, imperfect ex 
ante planning, endogenous cognitive constraints, and endogenous consideration sets—in ag-
gregative games of the kind that are common in macroeconomics and finance (see Angeletos 
and Lian, 2016, for a review). To our knowledge, comparable results on uniqueness, efficiency, 
and monotone comparative statics for these games do not exist in the literatures on the two most 
comparable decision frictions, random utility and costly information acquisition. We detail our 
connection to these literatures below.

An influential model of equilibrium with non-vanishing “mistakes” induced by random util-
ity is the Quantal Response Equilibrium (QRE) of McKelvey and Palfrey (1995). These authors 
add type-I extreme value noise to agents’ utility functions to smooth best responses into “better 
responses” (see the review by Goeree et al., 2016). Subsequent work generalizes this analysis 
by allowing for different noise distributions that imply different shapes of best-replies (see e.g.,
Melo, 2022; Fosgerau et al., 2020; Allen and Rehbeck, 2021). Most related to us, Melo (2022)
studies games with a finite number of players and actions and general noise distributions and, 
using convex analysis techniques, shows that QRE are unique if agents’ payoffs are sufficiently 
concave relative to the extent of strategic complementarity. Our analysis differs from this litera-
ture’s in four important ways. First, we consider games with a continuum of agents and actions. 
This is important because such games are common in macroeconomics and finance and, outside 
of Melo’s (2022) analysis with discrete actions and players, little remains understood about the 
uniqueness of QRE in games with a large number of players and/or actions (Goeree et al., 2016). 
Second, we provide monotone comparative statics results for action distributions, in terms of both 
first-order stochastic dominance and dispersion. We are not aware of any analogous results in the 
random-utility literature for the class of games that we study. Third, we can accommodate addi-
tional decision frictions which are not well captured by fixed payoff noise—for instance, costly 
ex ante planning and endogenous cognitive constraints. Finally, our analysis has meaningfully 
different normative properties because we model control costs.

With unrestricted costly information acquisition, we are aware of few equilibrium results that 
apply to our setting. Hébert and La’O (2022) provide sufficient conditions for equilibrium exis-
tence and efficiency in a setting with costly information acquisition under restrictions, relative to 
our set-up, to consider only mean-critical payoff functions and only the mean aggregator. Hébert 
and La’O (2022) provide an equilibrium uniqueness result only when equilibria are efficient, 
while our result applies to both efficient and inefficient equilibria under appropriate restrictions 
on complementarity arising from both payoffs and endogenous cognitive costs. Yang (2015) and 
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Morris and Yang (2022) study equilibrium existence and uniqueness in binary-action settings, to 
which we extend our analysis in Appendix C. To our knowledge, no references study monotone 
comparative statics at our level of generality.

Our paper contributes to the theoretical literature on aggregative games (see Jensen, 2018, for 
a review) by studying these games under general decision frictions. Our analysis also relates to 
a large literature on uniqueness in games with strategic complementarity (e.g., Morris and Shin, 
1998, 2002; Weinstein and Yildiz, 2007; Yang, 2015). Our proof strategy is most closely related 
to Frankel et al. (2003) and Mathevet (2010), in that we use contraction-mapping techniques, but 
differs in our use of variational techniques to derive necessary conditions for best responses that 
imply monotonicity and discounting. Our results on comparative statics are similar in spirit to 
those of Van Zandt and Vives (2007), but differ in that we study different games, with decision 
frictions, and provide comparative statics for action distributions.

Finally, our paper contributes to the literature on control costs and stochastic choice by propos-
ing a new class of state-separable cost functionals and applying them in games. This builds 
upon the analysis of Harsanyi (1973), Stahl (1990), and Van Damme (1991) who introduce spe-
cific control cost functionals that penalize the playing of sharply peaked stochastic choice rules, 
and Mattsson and Weibull (2002), who axiomatize entropic costs. Most relatedly, in decision 
problems, Fudenberg et al. (2015) axiomatize the class of additive perturbed utility cost (APU) 
functionals which penalize the expected utility of a mixed action with any convex function of the 
distribution of the mixed action. Our cost function is a weighted sum of APU cost functionals 
over states, with a weighting function that can depend arbitrarily on both exogenous and exoge-
nous states. Concretely, with weights given by the agents’ priors, our cost functional reduces to 
a state-by-state APU control cost functional that models ex post misoptimization. With uniform 
weights across states, our cost functional captures ex ante planning, as control costs must be 
incurred ex ante, while the benefits of plans only realize with probabilities given by the agents’ 
priors. With state-dependent weights, our cost functional allows for exogenous and endogenous 
state-dependence in the difficulty of choosing precise stochastic choice rules. As we later argue 
(see Section 2.3), capturing this broad range of behavior enables our class of cost functions to 
be consistent with the empirical regularities from the psychometrics literature (see Woodford, 
2020, for a review), the literature on stress and decision-making (Mani et al., 2013; Sergeyev et 
al., 2022), and the perceptual tests performed by Dean and Neligh (2022).

Outline. Section 2 introduces the model. Section 3 presents our main results on equilibrium 
properties. Section 4 discusses applications of our main results. Section 5 briefly discusses two 
extensions, a detailed comparison of state-separable and mutual information costs and an analysis 
of binary-action games. Section 6 concludes.

2. Model

2.1. Basic set-up: aggregative games with stochastic choice

A continuum of identical agents is indexed by i ∈ [0, 1]. They take actions xi ∈ X =
[x, x] ⊂ R. Cross-sectional distributions of actions are aggregated by an aggregator functional 
X : �(X ) → R. There is an underlying and payoff-relevant state of the world θ ∈ � ⊂ R. The 
state space � is a finite set, over which the agent has full-support prior π ∈ �(�). Agents have 
identical utility functions u :X ×R × � → R, where u(x, X, θ) is an agent’s utility from play-
5
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ing x when the aggregate is X and the state is θ . We assume that u and X are continuous and 
bounded.3

Given a conjecture that the aggregate follows a law of motion X̃ : � → R, which lies in the 
space of bounded functions B = {X̃|X̃ : � → R}, each agent chooses a stochastic choice rule P :
� → �(X ) with P(x|θ) describing the cumulative distribution of actions x taken by the agent 
in state θ . When this admits a density function, we denote a stochastic choice rule by p(x|θ). We 
call the set of measurable stochastic choice rules P . We model the cost of “controlling mistakes” 
via a cost functional c : P × B → R. This cost may depend on both the conjectured mapping 
from states to aggregates (as indicated) and on the prior for the state of nature (suppressed, as 
this prior is fixed in our analysis). In the next subsection, we specialize these costs to a specific 
class for our analysis.

The agent maximizes expected utility net of the control cost given their conjecture for how 
aggregate outcomes depend on the state. This is summarized in the following program:

max
P∈P

∑
�

∫
X

u(x, X̃(θ), θ) dP(x|θ)π(θ) − c(P, X̃) (1)

An equilibrium in this context is a Nash equilibrium: agents’ play is optimal given aggregate 
outcomes, and aggregate outcomes are those that are implied by agents’ play.4

Definition 1 (Equilibrium). An equilibrium is a collection of stochastic choice rules {P ∗
i }i∈[0,1]

and an equilibrium law of motion for aggregates X̂ : � →R such that:

1. All agents solve Program (1) under the conjecture that X̃(θ) = X̂(θ) for all θ ∈ �

2. The equilibrium law of motion is consistent with agents’ play, or X̂ = X ◦ ∫
[0,1] P

∗
i di

An equilibrium is symmetric if P ∗
i = P ∗ for all i ∈ [0, 1].

2.2. State-separable cost functionals

We now specialize to a new class of cost functionals that we introduce:

Definition 2 (State-separable cost functional). A cost functional c has a state-separable rep-
resentation if there exists a strictly convex function φ : R+ → R and a weighting function 
λ :R × � → R++ such that for any stochastic choice rule P with density p:

c(P, X̃) =
∑
�

λ(X̃(θ), θ)π(θ)

∫
X

φ(p(x|θ))dx (2)

with the convention that the cost is ∞ if P does not have a density.

Formally, state-separable cost functionals are a weighted sum across states of the APU cost 
functionals of Fudenberg et al. (2015). Informally, state-separable cost functionals capture the 

3 Throughout, our notion of continuity for functionals is the sup norm.
4 Methodologically, our setup recasts the game with incomplete information in the interim as an ex ante game with 

complete information and a strategy space sufficiently rich to embed all profiles of state-dependent mixed strategies. 
Morris and Yang (2022) use this approach to study binary-action games, as we also do in Appendix C.
6
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idea that it is costly for agents to control “mistakes.” The costs of controlling mistakes in different 
states potentially depend on both the identity of the states and the endogenous outcomes predicted 
for those states via the weighting function λ(X, θ).

In the remainder of this subsection, we give four specific examples of state-separable costs that 
capture ex post misoptimization, ex ante planning frictions, endogenous cognitive constraints, 
and endogenous consideration sets. In the next subsection, we discuss how these costs are con-
sistent with empirical evidence on decision frictions.

Ex post misoptimization with entropy costs. As a first example, we consider a case in which 
φ(p) = p logp and λ(X, θ) ≡ λ̄ > 0. These costs equal the expectation of the negative entropy 
of the conditional action distributions. Expected entropy costs encode that precise choice is costly 
and, therefore, that agents will ex post misoptimize. The expected entropy cost model is often 
applied in macroeconomics to study ex post misoptimization (e.g., Costain and Nakov, 2019; 
Macaulay, 2020; Flynn and Sastry, 2022). Expected entropy costs imply optimal action distribu-
tions of the following “logit” form:

p(x|θ) =
exp

(
λ̄−1u(x, X̃(θ), θ)

)
∫
X exp

(
λ̄−1u(z, X̃(θ), θ)

)
dz

(3)

When the set of actions is discrete, these choice patterns are identical to those generated in the 
model of McFadden (1973) in which agents perceive the perturbed utility function ũ(x, X, θ) =
u(x, X, θ) + εx , where εx is distributed type-I extreme value and IID across agents and actions. 
This model is ubiquitous for modeling consumer demand in industrial organization (see, e.g., 
Berry and Haile, 2021). The same model for choice is applied in game theory by McKelvey 
and Palfrey (1995) to define Quantal Response Equilibrium. However, our entropy-cost case 
differs from what is studied in these references in two key ways. First, actions in our model are 
continuous. Second, our model’s normative analysis is much different. Control costs model the 
fact that avoiding mistakes has real costs, while random utility treats random choices as ex post
optimal.

Finally, Matějka and McKay (2015) show that logit choice can be obtained as a limit case of a 
model of information acquisition with mutual information costs plus a restriction that all actions 
are ex ante exchangeable. We revisit this last connection in Online Appendix B, which studies 
the difference between our model and the mutual information model.

Prior-dependence and imperfect ex ante planning. As a second example, consider an arbitrary 
kernel, but now set λ(θ) = π(θ)−1λ̄. In this case, the agent’s cost functional is given by:

c(P ) = λ̄
∑
�

∫
X

φ(p(x|θ))dx (4)

This captures costly planning, where the agent plans for each state in advance, and then im-
plements these plans when states realize. Thus, costs of planning actions are incurred ex ante, 
and are therefore proportional to the number of required plans (i.e., states contemplated) and 
not their likelihood of occurring. Under the entropy kernel, this process generates the following 
choice probabilities:
7
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p(x|θ) =
exp

(
λ̄−1π(θ)u(x, X̃(θ), θ)

)
∫
X exp

(
λ̄−1π(θ)u(z, X̃(θ), θ)

)
dz

(5)

The agent optimally chooses to form better plans in states that they believe to be more likely. 
Concretely, the agent trades off the benefits of precise planning in a state against the cost that 
the state will not be realized and the plan will be useless. This allows us to capture the idea 
that agents rationally may prepare for very rare events, even if actions during those events are 
very important (an idea also proposed by Maćkowiak and Wiederholt, 2018). In Section 4.1, we 
apply this model to study equilibrium price-setting by monopolistically competitive firms in a 
monetary macroeconomic model.

Endogenous cognitive constraints. We next consider an example that sets λ(X, θ) = λ̃(X), for 
some decreasing function λ̃. Combined with the normalization that u is monotone in X, this em-
bodies the possibility that more favorable aggregate outcomes decrease decision costs while less 
favorable aggregate outcomes increase decision costs. A leading example studied by Mani et al. 
(2013) and Mullainathan and Shafir (2013) is that poverty impedes cognitive ability and induces 
mistakes in decisions. Our framework can model the possibility that this force is endogenous 
to others’ actions and/or mistakes, insofar as income is determined in equilibrium. Under the 
entropy kernel, choice probabilities follow:

p(x|θ) =
exp

(
λ̃(X̃(θ))−1u(x, X̃(θ), θ)

)
∫
X exp

(
λ̃(X̃(θ))−1u(z, X̃(θ), θ)

)
dz

(6)

In states with low weights λ̃(X), when aggregate outcomes are good and stress is low, choices 
are more precisely concentrated on high-payoff choices; in states with high weights λ̃(X), when 
aggregate outcomes are bad and stress is high, the opposite is true. Thus, in both cases, the 
characteristics of aggregate states and their psychological effects shape choice in ways that are 
not summarized by physical payoffs. In Section 4.2, we study a macroeconomic model in which 
endogenous stress shapes the determination of aggregate demand and income.

Consideration sets with quadratic costs. We now consider the quadratic kernel φ(p) = λ̄
p2

2
studied by Rosenthal (1989). Like the entropy kernel, the quadratic kernel penalizes action dis-
tributions that are more sharply peaked and rewards those that are more thinly spread. Unlike 
the entropy kernel, the quadratic kernel allows for agents to put exactly zero probability on cer-
tain actions. In the marketing literature, this phenomenon of agents playing only a strict subset 
of possible actions is sometimes referred to as a “consideration set” (e.g., Hauser and Werner-
felt, 1990). In the context of rational inattention models, Jung et al. (2019), Caplin et al. (2019), 
and Fosgerau et al. (2020) study this phenomenon. Stevens (2019) shows evidence of sparse 
price-setting choices in micro-data and argues that these patterns are consistent with a model of 
mutual-information costs.

We now illustrate how consideration sets emerge. Choice probabilities follow:

p(x|θ) = 1

λ̄
(u(x, X̃(θ), θ) − ū(X̃(θ), θ)) · I[u(x, X̃(θ), θ) ≥ ū(X̃(θ), θ)] (7)

where I[·] is the indicator function and ū(X̃(θ), θ) is defined such that 
∫
X p(x|θ) dx = 1. The 

consideration set of actions in state θ is therefore given by:
8
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X (θ, X̃) = {x ∈ X : u(x, X̃(θ), θ) ≥ ū(X̃(θ), θ)} (8)

If ū(X̃(θ), θ) > minX u(x, X̂(θ), θ), then a strictly positive (Lebesgue) measure of actions is 
chosen with zero probability in state θ . In general, without further assumptions, this set can 
contain many disjoint intervals. However, if u is quasiconcave in x, then X (θ; X̂) is a closed 
interval. Finally, observe that these consideration sets are endogenous to equilibrium outcomes 
as they depend on the equilibrium aggregate.

More generally, away from the quadratic kernel, consideration sets can obtain when φ does 
not satisfy an Inada condition, i.e., when limp→0 φ′(p) > −∞.

2.3. Experimental evidence and comparisons to the literature

Having illustrated the model’s capacity to generate a rich set of decision frictions, we now 
assess the model’s ability to match experimental evidence. We compare and contrast this with 
the ability of random utility and costly information acquisition models to do the same. We or-
ganize this discussion around five key stylized facts that emerge from the classic literature in 
experimental economics and experimental psychology surveyed by Woodford (2020), the state-
of-the-art perceptual study by Dean and Neligh (2022), and the cognitive experiments of Mani et 
al. (2013). We show that specializations of the state-separable model can capture combinations 
of these facts.

Fact 1: choice is random. People make inaccurate and random judgments in decision problems. 
These imperfect random choices are often measured in experiments that ask participants to pick 
which of two stimuli is larger (i.e., which noise is louder) and summarized as psychometric func-
tions that plot the probability of choosing the correct option against objective differences in the 
stimuli that are varied across experiments. These typically reveal a smooth, monotone relation-
ship that is interior to (0, 1) (see e.g., Figure 1 of Woodford, 2020, and each of the experiments in 
Dean and Neligh, 2022). The state-separable, random utility, and information acquisition models 
all rationalize random choice. The state-separable model does so by making precise optimization 
costly.

Fact 2: choice responds to incentives. People make more accurate and precise choices when the 
payoffs from doing so are higher. In perceptual tasks, error rates decrease in rewards (see, e.g.,
Figure 2b of Woodford, 2020, and Experiment 2 in Dean and Neligh, 2022). The state-separable 
and rational inattention model this as a rational response to higher returns to cognitive effort; the 
random utility model generates a similar prediction because larger payoff differences drown out 
fixed payoff noise.

Fact 3: choice depends on prior beliefs. People’s random choice responds to the probabilities 
of states, in repeated experiments where it may be reasonable to interpret these as prior beliefs. In 
repeated perceptual tasks, average error rates are lower in states that recur more often (see, e.g., 
Figure 2a of Woodford, 2020, and Experiment 3 of Dean and Neligh, 2022). This is consistent 
with state-separable costs that capture ex ante planning, as agents have incentives to exert more 
effort to prepare for more likely states. This result is also natural in many models of costly 
information acquisition. However, this result cannot be understood through the lens of random 
utility models (or, in games, QRE), as they embody no notion of ex ante planning and agents’ 
priors are irrelevant.
9
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Fact 4: choice depends on decision context. The accuracy and precision of choice vary with the 
“context” of decision problems, such as the action space and the state space.

First, Dean and Neligh (2022) show the importance of the action space. In Experiment 1, the 
authors first ask participants to pick between two options. The authors then introduce a third 
choice (i.e., expand the action space). They find that this increases the probability of one of the 
initial actions. This is consistent with state-separable costs exactly when different action spaces 
affect the difficulty of making choices (modeled through a change in the value of the weighting 
function). As observed by Dean and Neligh (2022), this is also consistent with models of costly 
information acquisition, but inconsistent with models of random utility, which predict that larger 
action spaces decrease the probabilities that all actions are played.

Second, three examples demonstrate the impact of changes in the state space. Experiment 4 
in Dean and Neligh (2022) shows that choice probabilities are more inaccurate when participants 
are asked to distinguish states that look more similar. Woodford (2020) surveys two related results 
in the psychometric literature. First, when laboratory participants are asked to reproduce a set 
of unknown distances from memory, they overestimate the shorter distances and underestimate 
the longer distances on average (Figure 4 of Woodford, 2020). Second, the extent of bias can 
depend systematically on the scale of stimuli (Figure 5 of Woodford, 2020). All of these results 
are consistent with the state-separable model where the weighting function depends on the state 
space, capturing the idea that some problems are easier to solve than others. These results are also 
consistent with information acquisition models that emphasize that the topology of the state space 
matters (e.g., Hébert and Woodford, 2020). However, they are inconsistent with information 
acquisition models that satisfy the Invariance Under Compression Axiom (Caplin et al., 2022), 
such as the canonical mutual information cost proposed by Sims (2003).

Fact 5: choice depends on decision-irrelevant context. The accuracy and precision of decisions 
can also depend on context that is not decision-relevant. For example, Mani et al. (2013) show 
that performance on abstract cognitive tasks declines when individuals are reminded of the dif-
ficulty of making financial decisions under poverty or, for predictable reasons, have higher or 
lower income from a seasonal cycle. In each case, except for the interaction with the (small) 
financial incentives, income could be viewed as irrelevant for the decision problem solved.

As mentioned earlier, our state-separable model can embody this property directly via appro-
priate specification of how the weighting function depends on endogenous states in a game (see 
Equation (6)). This directly embodies the idea expressed in the title of the Mani et al. (2013) that 
“Poverty Impedes Cognitive Function,” no matter what decision problem agents are solving (i.e.,
what are their payoffs, action space, or state space).

A model of costly information acquisition has the flexibility to explain this sort of finding, 
mathematically speaking. But this has an important caveat. The ability of this model to generate 
more “mistakes” in a poverty state relies on the premise of imperfect observation of income, or 
a heightened inability to determine income when it is low overall.5 But this would be hard to 
square with the findings of Mani et al. (2013) in tasks for which income is (almost) decision-
irrelevant. More broadly, the notion that imprecise choice must arise through imperfect learning 
places significant restrictions on how decision frictions vary across contexts.

5 Concretely, one could apply a variant of the Hébert and Woodford (2020) neighborhood-based cost or the Pomatto et 
al. (2023) log-likelihood-ratio cost in which states corresponding to poverty are harder to distinguish from others.
10
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Summary. State-separable costs are consistent with Facts 1 to 5. Random utility models can 
explain only Facts 1 and 2. All models of costly information acquisition can explain Facts 1, 
2, and 3; some models can be consistent with Fact 4 (but not mutual information); but none 
could easily explain Fact 5. On the basis of this, we argue that state-separable costs provide 
a flexible way of modeling a variety of decision frictions in a way that is consistent with our 
best experimental evidence. An example “workhorse” model that could capture all five facts is 

a model with the quadratic kernel φ(p) = p2

2 with weighting function λ(θ) = π(θ)−1λ̃(X), for 
some decreasing function of X.

However, there are potentially testable implications of information acquisition models with 
which state-separable costs would not be consistent. In particular, information acquisition mod-
els make predictions about the joint properties of beliefs and actions. This notwithstanding, it 
has been customary in the decision-theoretic literature to ignore these predictions, and instead 
to focus entirely on predictions for choice, under the premise that internal mental states are 
unobservable (e.g., Caplin and Dean, 2015; Caplin et al., 2022). Moreover, existing tests of in-
formation acquisition models derived from the analysis of Caplin and Dean (2015) and Caplin 
and Martin (2015) and performed by Dean and Neligh (2022) are one-sided: they reveal that 
information acquisition is consistent with the data, but not that non-informational models are 
inconsistent with the data.

3. Main results

We now prove existence, uniqueness, efficiency, and equilibrium monotone comparative stat-
ics for both the aggregate and the cross-sectional action distribution. Our approach will be to 
establish that the correct notion of a “best response function” for the aggregate action X is a 
contraction map that satisfies certain properties.

3.1. Assumptions: payoffs and aggregator

We first identify conditions on payoffs, aggregators, and stochastic choice functionals suffi-
cient to guarantee uniqueness. For payoffs, we first require complementarities in the underlying 
game in the form of supermodularity in cost-normalized payoffs between an agent’s own action 
and the aggregate. Second, we require that these complementarities are not too strong in the sense 
that payoffs are sufficiently concave to outweigh them:

Assumption 1 (Supermodularity and sufficient concavity). The payoff function u and weighting 
function λ are such that the following holds for all x′ ≥ x, X′ ≥ X, and θ :

u(x′,X′, θ) − u(x,X′, θ)

λ(X′, θ)
≥ u(x′,X, θ) − u(x,X, θ)

λ(X, θ)
(9)

Moreover, for all α ∈R+, x′ ≥ x, X, and θ , the following holds6:

u(x′ − α,X, θ) − u(x − α,X, θ)

λ(X, θ)
≥ u(x′,X + α, θ) − u(x,X + α, θ)

λ(X + α, θ)
(10)

6 In stating this assumption, we are implicitly extending the domain of u so that it is well-defined under such transla-
tions.
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Informally, the former part of the assumption ensures that when aggregate actions go up, 
agents have an incentive to increase their own action. The latter part of the assumption ensures 
that agents’ actions are less than one-for-one sensitive to the aggregate.

To gain a stronger intuition for the role of this assumption, and to provide easily verifiable 
conditions under which it holds, we characterize it with twice continuously differentiable payoffs 
u and weighting functions λ:

Lemma 1. When u(·, θ) is twice continuously differentiable in (x, X) and λ(·, θ) is twice contin-
uously differentiable in X for all θ , Assumption 1 is equivalent to the following:

0 ≤ uxX(x,X, θ) − ux(x,X, θ)
λX(X, θ)

λ(X, θ)
≤ −uxx(x,X, θ) (11)

for all x, X and θ .

Proof. See Appendix A.1. �
When cognitive constraints are exogenous, this condition reduces to the requirement that 0 ≤

uxX ≤ −uxx , which is a standard condition for unique equilibrium in supermodular games (see 
e.g., Weinstein and Yildiz, 2007). Intuitively, this condition requires that the slope of agents’ 
optimal actions to changes in aggregate actions are bounded between zero and one.

When cognitive costs are endogenous, strategic complementarity now has both a physical pay-
off complementarities component uxX and a cognitive complementarities component −ux

λX

λ
. To 

understand why cognitive complementarities take this form, suppose that aggregate actions in-
crease and this raises cognitive costs by λX

λ
percent. This gives the agent an incentive to spread 

out their actions around any locally optimal action. If the agent is playing an action greater than 
any locally optimal action, their marginal utility from increasing their own action is negative 
(ux < 0). However, as cognitive costs have gone up, the agent is now more willing to accept 
such a negative marginal payoff, and so has incentives to further increase the likelihood that their 
action lies further from the locally optimal point. Thus, when ux is negative, when cognitive costs 
increase, the agent has an incentive to play higher actions and there is strategic complementarity, 
i.e., −ux

λX

λ
> 0. When ux is positive, the reverse logic is true, and increased cognitive costs 

make actions strategic substitutes. Thus, with cognitive strategic externalities, we require that (i) 
any strategic substitutability through cognitive costs never outweighs strategic complementari-
ties in physical payoffs, and (ii) agents’ payoff functions are sufficiently concave to outweigh 
both physical payoff complementarities and cognitive complementarities.

Having identified conditions on payoffs, we now turn to the aggregator. To retain the ordering 
between actions and aggregates, we assume that the aggregator is monotone in the sense of first-
order stochastic dominance. We further assume that the aggregator satisfies discounting, which 
is to say that it is sub-linear in level shifts of the cross-sectional action distribution (see Cerreia-
Vioglio et al., 2020, for a discussion of monotone and (sub-)linear aggregators):

Assumption 2 (Monotone and discounted aggregator). For all g, g′ ∈ �(X ):

g′ �FOSD g =⇒ X(g′) ≥ X(g) (12)

Moreover, there exists β ∈ (0, 1) such that for any distribution g ∈ �(X ) and any α ∈R+:

X({g(x − α)}x∈X ) ≤ X({g(x)}x∈X ) + βα (13)
12
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We moreover, note that the assumption that β < 1 can be relaxed to allow β = 1 if the second 
inequality in Assumption 1 (Equation (10)) is made strict. In the interests of concreteness, the 
following Lemma (the proof of which is immediate, and therefore omitted) provides several 
important and natural aggregator functions that satisfy Assumption 2.

Lemma 2. The following aggregators satisfy Assumption 2:

1. Linear aggregators:

X(g) = β

∫
X

f (x)g(x)dx (14)

where β ∈ [0, 1) is a parameter controlling discounting and f : X → R is a differentiable 
function such that f ′ ∈ [0, 1].

2. Quantile aggregators:

X(g) = βG−1(l) (15)

where β ∈ [0, 1) is a parameter controlling discounting, G(x) = ∫ x

x
g(x̃) dx̃ is the CDF of the 

cross-sectional action distribution, G−1 is its left-inverse, and l ∈ (0, 1).

Linear aggregators with polynomial kernels f (x) = a0 + a1x + . . . + alx
l (subject to the 

monotonicity and discounting constraints that f ′(x) ∈ [0, 1] on [x, x]) allow the aggregator 
to depend on all moments of the cross-sectional distribution of actions. The mean aggregator, 
X(g) = β

∫
X xg(x) dx, is a special case of this class when l = 1. Thus, our analysis nests the 

common assumption in macroeconomics that interactions take place through the mean action 
(see Angeletos and Lian, 2016, for a review). Moreover, the polynomial sub-class allows for 
higher moments of the action distribution to enter agents’ payoffs. This allows the dispersion 
l = 2, skewness l = 3, and kurtosis l = 4 of other agents’ actions to matter for agents’ strate-
gic incentives. Such aggregators also have natural macroeconomic applications. For example, 
in Flynn and Sastry (2022), the fact that dispersion reduces aggregate outcomes generates im-
portant general equilibrium forces. Quantile aggregators include the median when l = 1

2 . Such 
aggregators are relevant when agents care about what an average agent does, rather than what 
other agents do on average.

Assumption 2 rules out aggregators that do not preserve the monotonicity of actions, e.g.,
linear aggregators with a negative slope, or those that are more than one-for-one sensitive to 
translations of actions, e.g., linear aggregators with a slope greater than one. Intuitively, such 
aggregators break either strategic complementarity or sufficient concavity.

3.2. Intermediate result: properties of stochastic choice

Assumption 2 suggests a path toward ensuring that equilibrium is described by a contrac-
tion map if, in response to level shifts in the aggregate, the optimal stochastic choice pattern 
increases in the sense of first-order stochastic dominance (monotonicity) but remains dominated 
by the level shift itself (discounting). These are intuitive properties given the supermodularity 
and concavity of payoffs, which encode that level shifts in the (conjectured) aggregate globally 
increase the attractiveness of playing higher x, but in a way that is less than one-for-one. We now 
13
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show an interpretable sufficient condition within the state-separable class which guarantees that 
monotonicity and discounting translate appropriately to stochastic choice.

We first define a new property of a function that we label the quasi-monotone-likelihood-ratio-
property (quasi-MLRP). This condition allows us to relate the underlying cost functional to the 
distribution of actions induced by optimality.

Definition 3 (Quasi-MLRP). A function f : R+ →R satisfies quasi-MLRP if for any two distri-
butions g′, g ∈ �(X ):(

f (g′(x′)) − f (g′(x)) ≥ f (g(x′)) − f (g(x)) ∀x′ ≥ x
)

=⇒ g′ �FOSD g (16)

With this definition in hand, we can now state our final technical assumption on stochastic 
choice functionals, which ensures that we can always translate dominance in payoff units to 
dominance in terms of distributions:

Assumption 3 (Quasi-MLRP kernel). Costs have a differentiable kernel φ such that φ′ satisfies 
quasi-MLRP.

It is important to note that the two workhouse kernels in the literature on control costs satisfy 
this assumption:

Lemma 3. The entropy kernel φ(p) = p logp and the quadratic kernel φ(p) = 1
2p2 satisfy As-

sumption 3.

Proof. See Appendix A.2. �
We can now state a Proposition using this assumption and our earlier assumptions on payoffs 

to establish monotonicity and discounting of the solution of the stochastic choice problem:

Proposition 1 (Monotone and discounted stochastic choice). Consider the stochastic choice pro-
gram with payoffs satisfying Assumption 1 and cost functional satisfying Assumption 3. Then,

1. The optimal stochastic choice rule p∗ is weakly increasing in the sense that if X̂′ ≥ X̂ then 
p∗(θ; X̂′) �FOSD p∗(θ; X̂) for all θ ∈ �.

2. The optimal choice profile is discounted in the sense that when X̂ and X̂′ = X̂+α for α ∈ R+, 
we have that p∗−α(θ; X̂) �FOSD p∗(θ; X̂′) for all θ ∈ �, where p∗−α denotes the translation 
of p∗ to the right by α.

Proof. See Appendix A.3. �
The key to both parts is that quasi-MLRP allows us to “invert” dominance relationships in 

payoffs to obtain dominance relationships between distributions. For the first part, we show that 
the dominance of payoffs for playing higher x from supermodularity implies dominance of dis-
tributions under quasi-MLRP. For the second part, we use the property off payoffs from (10) that 
concavity of utility exceeds strategic complementarity, to show the optimal stochastic choice rule 
is dominated by the claimed level shift in the rule.
14
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Proposition 1 is the core of our environment’s tractability. It is in principle the ingredient that 
might be replaced in an alternative model of stochastic choice, like a form of unrestricted infor-
mation acquisition. But, to our knowledge, such monotonicity and discounting results do not exist 
for any form of information acquisition in general environments. Moreover, this is not merely a 
technical glitch. A very relevant mechanism, anchoring toward frequently played actions, fights 
such monotonicity and discounting in information acquisition models. In a numerical example 
with the mutual-information cost (Sims, 2003) in Appendix B, we show that violations of mono-
tonicity and discounting obtain in the single-agent problem and how this leads to non-uniqueness 
and non-monotone comparative statics in the equilibrium of an example game.

3.3. Existence and uniqueness

We can now state our main existence and uniqueness result:

Theorem 1 (Existence, uniqueness, and symmetry). Under Assumptions 1, 2 and 3, there exists 
a unique equilibrium. The unique equilibrium is symmetric.

Proof. See Appendix A.4. �
As alluded to above, we show this result by defining an equilibrium operator that maps the 

law of motion of the aggregate in the state to the resulting optimal stochastic choice rule and then 
maps this back to a law of motion of the aggregate, and then determining that said operator is 
a contraction map. More formally, let B = {X̂|X̂ : � → R} be the space of (bounded) functions 
endowed with the sup norm. We define the operator T : B → B:

T X̂ = X ◦ p∗(X̂) (17)

To show uniqueness of the equilibrium law of motion of aggregates, it then suffices to prove that 
T is a contraction map. We prove this by showing that, under the given assumptions, T satisfies 
both of Blackwell’s conditions of monotonicity and discounting. Given the unique equilibrium-
consistent law of motion which satisfies T X̂ = X̂, the equilibrium stochastic choice rule is then 
the unique solution of the stochastic choice problem given that law of motion, or p∗(X̂). This 
extends classic uniqueness results to the realm of stochastic choice.7

3.4. Monotone comparative statics

Once we lie in the realm of unique equilibria, it is well-posed to consider comparative statics 
in equilibrium. We provide two such results, showing when the action distribution and aggregate 
action are monotone in the state and when the precision of agents’ actions is monotone in the 
state.

3.4.1. Monotonicity of action distributions
To show monotonicity of distributions and aggregates, we require a stronger supermodularity 

assumption that not only are individual actions and aggregate actions complements, but so too 

7 One could dispense with Assumptions 1, 2, and 3 and prove existence in our setting only by applying the Schauder 
fixed-point theorem. We omit this result as it is simple, and because our analysis will proceed afterward under Assump-
tions 1, 2, and 3.
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is the underlying state itself a complement to both individual actions and aggregates in cost-
adjusted payoffs:

Assumption 4. The payoff function u and weighting function λ are such that the following holds 
for all θ ′ ≥ θ, X′ ≥ X, x′ ≥ x:

u(x′,X′, θ ′) − u(x,X′, θ ′)
λ(X′, θ ′)

≥ u(x′,X, θ) − u(x,X, θ)

λ(X, θ)
(18)

As before, to gain a stronger intuition and provide an easily verifiable condition, we charac-
terize this assumption when u and λ are twice continuously differentiable:

Lemma 4. When u is twice continuously differentiable in (x, X, θ) and λ is twice continuously 
differentiable in (X, θ), Assumption 4 is equivalent to

uxX(x,X, θ)−ux(x,X, θ)
λX(X, θ)

λ(X, θ)
≥ 0 and uxθ (x,X, θ)−ux(x,X, θ)

λθ (X, θ)

λ(X, θ)
≥ 0

(19)

for all x, X and θ .

The proof follows from the same steps as in the proof of Lemma 1, simply relabeling X as 
θ , and is therefore omitted. The first inequality (“complementarity with X”) is identical to that 
in Lemma 1, and the second is its mirror image for “complementarity with θ”. When cogni-
tive costs do not depend on exogenous states λθ = 0, this second condition reduces to uxθ ≥ 0. 
When cognitive costs depend on exogenous states, the intuition for the additional term echoes 
the discussion of complementarity with X. The presence of this additional term underscores the 
fact that state-varying control costs affect agents’ incentives to shift their entire distribution of 
stochastic choice upward in higher states.

Under this assumption, we show the following result:

Theorem 2 (Monotone actions and aggregates). Under Assumptions 1, 2, 3, and 4, the unique 
equilibrium action distribution is monotone increasing in the sense of FOSD and the law of 
motion of the aggregate is increasing in the underlying state.

Proof. See Appendix A.5. �
The intuition for this result is simple: higher θ makes higher actions more desirable, so the dis-

tribution of actions in higher states dominates the distribution in lower states. This is complicated 
by the fact that agents may face higher cognitive costs in higher states. Hence, the relevant no-
tion of complementarity is complementarity in cost-adjusted payoffs. The proof strategy makes 
use of the contraction mapping property used in the uniqueness proof. In particular, it shows that 
monotonicity is preserved by the fixed point operator and therefore that the fixed point must itself 
be monotone.

This result has the following immediate implication for the supports of action distributions:
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Corollary 1 (Monotone consideration sets). Under the conditions of Theorem 2, in the unique 
equilibrium agents’ consideration sets X (θ) = clX {x ∈ X : p∗(x|θ, X̂(θ)) > 0} are increasing 
in the strong set order.8

As optimal distributions increase in the sense of first-order stochastic dominance, the supports 
must move in the sense of the strong set order. The result is vacuous if the cost kernel satisfies 
an Inada condition and X (θ) =X for all θ . The result has bite if agents, for example, have costs 
with the quadratic kernel, which does not satisfy an Inada condition and may result in agents’ 
optimally playing only a subset of available actions. In this case, the result puts structure on the 
endogeneity of consideration sets—agents consider larger actions in higher states in equilibrium.

3.4.2. Monotonicity of action precision
We now turn to establish when the precision of, or extent of mistakes in, agents’ actions is 

monotone in the state in equilibrium. To this end, in our context with flexible stochastic choice, 
we first need a non-parametric notion of precision:

Definition 4 (Precision). Fix an h : R → R. A symmetric distribution g is more precise about 
a point x∗ than g′ about x∗′

under h if h ◦ g(|x − x∗|) is faster decreasing in |x − x∗| than is 
h ◦ g′(|x′ − x∗′ |) in |x′ − x∗′ |.9

Informally, this definition requires that a distribution is more precise than another if its den-
sity is more rapidly decreasing away from the point about which precision is being considered. 
This definition generalizes the property that Gaussian distributions are more precise about their 
mean when they have a lower standard deviation to cases with non-Gaussian densities by exactly 
capturing the idea that a distribution is more precise if its tails decay faster from the point about 
which a distribution is centered.10

Having defined precision, we now state sufficient assumptions on payoffs for precision to be 
monotone. To show this result, we specialize to a distance-based payoff environment, which we 
refer to throughout as generalized beauty contest payoffs:

Assumption 5 (Generalized beauty contests). The utility function is given by:

u(x,X, θ) = α(X, θ) − β(X, θ)�(|x − γ (X, θ)|) (21)

where � is monotone increasing and such that �(0) = 0, γ (X, θ) is monotonically increasing in 
(X, θ), and β(X, θ) is positive, for every (X, θ).

8 Where clXA denotes the closure of set A within X .
9 On an asymmetric support, we call a distribution g symmetric if g(x) = g(−x) whenever both g(x) and g(−x)

are defined. For any symmetric functions ξ, ̂ξ : A → R, we say that ξ is faster decreasing than ξ̂ in their arguments if 
ξ(0) − ξ(|x|) ≥ ξ̂ (0) − ξ̂ (|x|) for all x ∈ A.
10 To see this, recall that a Gaussian random variable with mean μ and standard deviation σ has pdf:

g(x) = 1√
2πσ 2

exp

{
− 1

2

(
x − μ

σ

)2
}

(20)

Thus, for two Gaussian distributions with means μ, μ′ and standard deviations σ, σ ′ such that σ < σ ′ , we have that 
h ◦ g(|x − μ|) is faster decreasing than h ◦ g′(|x − μ′|) whenever h is monotone. Thus, under monotone h, we have that 
Gaussian distributions with lower standard deviations are more precise about their mean under our definition of precision.
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Under distance-based payoffs with distance function �, an agent cares only about how far 
their action is from an optimal action conditional on others’ play X and the state θ , γ (X, θ). The 
extent to which they care is governed by β(X, θ), with larger values inducing greater losses from 
failing to match the optimal action.

We note that this formulation nests the quadratic payoff functions, which can be justified via a 
second-order approximation of any smooth, concave utility function around its maximum value 
γ (X, θ):

Lemma 5. Consider a payoff function u :X ×R ×� that is twice differentiable, strictly concave 
in its first argument, and maximized for every (X, θ) ∈R × � at some x∗(X, θ) ∈ int(X ). Then, 
up to a term that is on the order of |x − x∗(X, θ)|3, payoffs conditional on each (X, θ) take 
the form of Equation (21) with α(X, θ) = u(x∗(X, θ), X, θ), β(X, θ) = 1

2 |uxx(x
∗(X, θ), X, θ)|, 

γ (X, θ) = x∗(X, θ), and �(x) = x2.

This result follows immediately from taking a Taylor expansion of u around its optimal value 
in each state, observing that the first-order term is zero because of the first-order condition for op-
timality, and using Taylor’s Theorem to describe the residual error. In this interpretation, γ (X, θ)

is the optimal action conditional on (X, θ) and β(X, θ) measures the curvature of payoffs, or 
second-order loss of mis-optimization, around that point.

We now state the result, which encapsulates the idea that precision is higher when the losses 
from mis-optimization are higher for endogenous or exogenous reasons:

Theorem 3 (Monotone precision). Under Assumptions 1, 2, 3, 4, and 5, p∗(θ) ∈ �(X ) is more 
precise about γ (X̂(θ), θ) than p∗(θ ′) about γ (X̂(θ ′), θ ′) under φ′

1. For any θ ≤ θ ′ if β(X,θ)
λ(X,θ)

is monotone decreasing in both arguments.

2. For any θ ≥ θ ′ if β(X,θ)
λ(X,θ)

is monotone increasing in both arguments.

Proof. See Appendix A.6. �
The proof of this result shows that the agents’ incentives to transfer probability mass from 

the ideal point γ (X̂(θ), θ) to any other x ∈ X are strictly lower when β(X,θ)
λ(X,θ)

is larger, which 
translates directly to our notion of precision. Note that this combines the incentives for precision 
from the curvature in the utility function, β , and from the scaling of the cost function, λ. This 
calculation relies on the symmetry of distance-based payoffs around γ (X̂(θ), θ). It then leverages 
the fact that X̂ is monotone in θ in equilibrium, because of Theorem 2, which in turn implies 

monotonicity of the mapping θ �→ β(X̂(θ),θ)

λ(X̂(θ),θ)
, decreasing in case 1 and increasing in case 2. Put 

differently, the “endogenous” and “exogenous” stakes of making good choices both move in the 
same direction in equilibrium. Thus, precision is monotone in the state.11

This result has the following immediate implication for the size of agents’ equilibrium con-
sideration sets:

11 Unsurprisingly, we cannot state a general result when β(X,θ)
λ(X,θ)

is not strictly monotone in its two arguments; but we 
could of course still use part of the previous argument to compare precision in any two states (θ, X̂(θ)), (θ ′, X̂(θ ′)) after 
solving for equilibrium.
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Corollary 2 (Monotone size of consideration sets). Under the conditions of Theorem 3, if 1. 
(resp. 2.) holds, then the Lebesgue measure of X (θ) is increasing (resp. decreasing) in θ .

Thus, as is intuitive, in states where agents’ cost-adjusted states are higher, agents choose 
from smaller consideration sets.

3.5. Efficiency

A further question of interest is when equilibria of our model are efficient. As our agents are 
symmetric, ex-ante Pareto efficiency and utilitarian efficiency are equivalent. We therefore say 
that a stochastic choice rule is efficient if it maximizes utilitarian welfare:

Definition 5. A stochastic choice rule P E ∈P is efficient if it solves the following program:

P E ∈ arg max
P∈P

∑
�

∫
X

u (x,X(P (θ)), θ) dP(x|θ)π(θ) − c(P,X(P )) (22)

An efficient stochastic choice rule both fully internalizes the effect choices have on aggregates 
and the costs of stochastic choice. Moreover, this notion of efficiency takes seriously that agents 
do incur the cognitive cost of constraining their mistakes. We now ask, when will equilibrium 
be efficient? The following result relates the answer to this question to the balancing of aggre-
gate externalities in physical and payoffs. To derive a variational necessary condition, we make 
technical assumptions sufficient to guarantee differentiability:

Assumption 6 (Regularity conditions for efficient program). Suppose that the planner’s objective 
in Equation (22) is strictly concave in P , u is differentiable in its second argument X, λ is 
differentiable in its first argument X, and the aggregator is linear:

X(g) =
∫
X

f (x) dG(x) (23)

for some nowhere-constant function f .

Theorem 4. Under Assumption 6, a necessary condition for efficiency of an equilibrium stochas-
tic choice rule p∗ is that:∫

X

uX(x̃,X(p∗(θ)), θ)p∗(x̃|θ)dx̃ = λX(X(p∗(θ)), θ)

∫
X

φ(p∗(x̃|θ))dx̃ (24)

for all θ ∈ �.

Proof. See Appendix A.7. �
To understand this result, we first consider the case in which there are no payoff externalities 

in costs or λX = 0. In this case, the condition requires that the average externality of increasing 
the aggregate is zero. This condition is evaluated at the equilibrium stochastic choice pattern, but 
does not depend directly on the structure of cognitive costs. Thus, to evaluate such a condition 
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(under the assumption that λX = 0), an observer needs only to know about payoff externalities 
and the observed distribution of choices.

We next consider the case in which λX �= 0. In this case, efficiency obtains when the aforemen-
tioned payoff externality balances with a cognitive externality, to use the language of Angeletos 
and Sastry (2023), operating directly through costs. Consider our recurring example of cognitive 
costs that decrease with the value of X because of poverty-induced stress (λX < 0) and assume 
that the utility costs of cognition are positive in all states.12 The cognitive externality is that 
increasing X directly decreases every agent’s cognitive cost. A non-paternalistic planner, who 
takes cognitive costs into account, considers also this externality. Thus, an optimal allocation (if 
it exists) tolerates a negative marginal payoff externality to achieve a positive marginal cognitive 
externality. We return to this specific point in a concrete example in Section 4.2 and Corollary 4.

Relative to the literature, our analysis therefore identifies a new channel through which ratio-
nal decision frictions can create equilibrium externalities and induce inefficiency. This supple-
ments the findings of Hébert and La’O (2022) for aggregative games with information acquisition 
and Angeletos and Sastry (2023) for Arrow-Debreu economies with information acquisition. 
Relative to the related results in those papers, our Theorem 4 has three substantial differences. 
First, it clarifies how cognitive externalities can operate outside of information acquisition mod-
els. Second, it sheds light on the nature of inefficiency—in particular, the direction in which a 
social planner would want to perturb aggregates—in inefficient equilibrium. By contrast, due 
to the intractable structure of general cognitive externalities in information-acquisition models, 
Hébert and La’O (2022) and Angeletos and Sastry (2023) can say relatively little about the same 
in their settings. Third, leveraging our state-separable structure, it provides a testable condition 
to compare the extent of these externalities with “standard” payoff externalities to gauge effi-
ciency.

4. Applications

We now apply our model to make equilibrium predictions in two macroeconomic settings. We 
first study price-setting by monopolistic firms, a cornerstone of the “supply block” of modern 
macroeconomic models. In our model, firms imperfectly price their goods because of ex ante
planning frictions. We show how to make equilibrium predictions for the aggregate price level 
and price dispersion that take into account the aggregate consequences of “pricing mistakes” 
and firms’ differential incentives to rein in these mistakes in different aggregate states. We next 
study consumption and savings decisions in a liquidity trap, a cornerstone of the “demand block” 
of modern macroeconomic models. In our model, consumption plans are imperfect because of 
costly control. Moreover, these costs increase when households have low income, capturing the 
possibility that psychological stress impairs decisionmaking in these states. We show how to 
make predictions for aggregate income and consumption inequality and characterize a novel 
equilibrium externality that arises because one agent’s lack of consumption increases others’ 
costly stress.

12 Note, of course, that in our model these costs need not be positive. The following more perverse model would also 
be consistent with empirical evidence that scarcity reduces decision quality (e.g., Mani et al., 2013): low X increases the 
scale of cognitive costs, reducing relative incentives for precise optimization, but has a positive level effect on welfare. 
In this case, our intuition for why there is a role of cognitive externalities would be the same, and Theorem 4 would still 
hold; but the intuition for the sign of effects would flip.
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4.1. Price-setting with planning frictions

Set-up. Each agent i ∈ [0, 1] is a firm that produces a differentiated variety in quantity qi at 
price pi ∈ [p, p] with p > 0. These firms use intermediate goods zi , with marginal cost k, to 
produce according to the production technology qi = zi . The outputs of these firms are consumed 
by a representative household, with constant elasticity of substitution (CES) consumption bundle:

C =
⎛
⎝ 1∫

0

q
η−1
η

i di

⎞
⎠

η
η−1

(25)

where η > 1. As is standard (see e.g., Hellwig and Venkateswaran, 2009), the household’s pref-
erences over consumption and real money balances M

P
are given by:

V

(
C,

M

P

)
= C1−σ

1 − σ
+ ln

M

P
(26)

where σ ≥ 0. The money supply is an exogenous shock in the discrete set M with minimal and 
maximal elements M and M , such that M > p and M < p. Moreover, we make the standard 
simplifying assumption (Alves et al., 2020; Flynn and Sastry, 2022) that real marginal costs are 
a log-linear function of aggregate output:

k

P
= Cχ (27)

where χ > 0 represents “factor price pressure”, i.e., the extent to which real marginal costs are 
increasing in the level of output in the economy.

To study how planning frictions matter, we subject the firm to a state-separable cost function 
with any kernel satisfying Assumption 3 (e.g., the entropy kernel φ(p) = p logp) and a weight-
ing function inversely proportional to how likely the firm thinks each realization of the money 
supply π(M) is, i.e., λ(M) = 1

π(M)
. This captures a situation in which firms must plan for contin-

gencies (realizations of the money supply) in advance and then implement these plans when the 
state is realized. This premise is shared by the analysis of Maćkowiak and Wiederholt (2018), 
who also study ex ante planning with mutual information costs. However, our analysis differs 
in the specific monetary business-cycle model that we study, the cost functions we consider, our 
analysis of general-equilibrium implications, and our predictions for the price distribution. More-
over, we assume that π(M) ∝ Mδ , where δ > 0 corresponds to high money supply states being 
more likely and δ < 0 means that low money supply states are more likely.

Recasting the economy as a game. Given the CES aggregator, the firm faces an isoelastic de-
mand curve:

qi =
(pi

P

)−η

C (28)

where P is the ideal price index under CES production:

P =
⎛
⎝ 1∫

p
1−η
i di

⎞
⎠

1
1−η

(29)
0
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The firms’ profits are moreover priced according to the real stochastic discount factor (the house-
hold’s marginal utility from consumption) C−σ . Thus, the firm’s objective function is:

π(pi,P,C, k) = C−σ pi − k

P

(pi

P

)−η

C = C1−σ P η−1(pi − k)p
−η
i (30)

Substituting in the equilibrium conditions that k = PCχ (factor supply) and C = (
M
P

) 1
σ (money 

demand), we obtain that the firm’s payoff function is:

u(pi,P,M) = M
1−σ
σ P η− 1

σ

(
pi − M

χ
σ P 1− χ

σ

)
p

−η
i (31)

To apply all of our results, we perform the standard approximation (as per Lemma 5) of the firm’s 
objective function to second-order around the optimal price in each state. This yields the payoff 
function:

u(pi,P,M) = α(P,M) − β(P,M)(pi − γ (P,M))2 (32)

where:

α(P,M) = 1

η − 1

(
η

η − 1

)−η

M
1−σ+χ(1−η)

σ P η− 1
σ

+(1−η)(1− χ
σ

)

β(P,M) = η

2

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ P (η+1)
χ
σ

− 1
σ

−1

γ (P,M) = η

η − 1
M

χ
σ P 1− χ

σ

(33)

and we impose that this game has complementarity in optimal actions by assuming factor price 
pressure is weaker than income effects in money demand, or χ < σ . Finally, as is also standard, 
we approximate the aggregator to first order as:

P =
1∫

0

pi di (34)

which simply says that the aggregate price level is the average price set by firms.

Results and interpretation. To build intuition, we first characterize equilibrium in this model in 
the absence of ex ante planning frictions. In this case, the optimal price that a firm sets is given 
by:

p = η

η − 1
M

χ
σ P 1− χ

σ (35)

which is a constant markup over marginal cost. Thus, we observe that there is a unique equilib-
rium in which all firms set the same price (there is no price dispersion) and the aggregate price 
level is given by:

P =
(

η

η − 1

) σ
χ

M (36)

In this equilibrium, the elasticity of prices to the money supply is one, i.e., a 1% increase in the 
money supply leads to a 1% increase in the price level.
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We now apply our general results to this economy when firms face ex ante planning frictions. 
Specifically, we ask when this price-setting economy has a unique equilibrium, when the aggre-
gate price level is increasing in money, when the distribution of prices is increasing (in the sense 
of FOSD) in money, and when the dispersion in prices is highest when inflation is high.

Corollary 3. There is a unique equilibrium if, for all p, P ∈ [p, p] and M ∈ M:

−
(

P

γ (P,M)
(
1 − χ

σ

) − 1

)
<

−1 − 1
σ

+ (η + 1)
χ
σ(

1 − χ
σ

) (
p

γ (P,M)
− 1

)
< 1 (37)

The unique aggregate price level and distribution of prices are both increasing in the money 
supply if, in addition:

1 − σ − χ(η + 1) + δσ

χ

(
p

γ (P,M)
− 1

)
< 1 (38)

Moreover, price precision is decreasing in the money supply and the price level if, in addition:

χ(η + 1) ∈ (1 + σ(δ − 1),1 + σ) (39)

Proof. See Appendix A.9. �
To understand this result, we go through each condition in turn. The uniqueness condition 

(Equation (37)) comprises two inequalities. The inequality on the right ensures that the game is 
one of complementarities. The inequality on the left ensures that utility has sufficient concavity 
relative to complementarity. In the special case where the losses from mispricing do not depend 
on the aggregate price level ((1 + η)

χ
σ

− 1
σ

− 1 = 0), the middle term is equal to zero and the 
complementarity condition always holds. This is because we have assumed that factor price 
pressure is weaker than income effects (χ < σ ), which makes the optimal price increase in the 
aggregate price. When the losses from mispricing are instead endogenous ((1 + η)

χ
σ

− 1
σ

−
1 �= 0), there is a new effect that must be accounted for. Intuitively, suppose without loss of 
generality that an agent is setting a price that is less than the optimal price and an increase in the 
aggregate price level increases (decreases) the losses from mispricing, then the agent now has a 
greater (lesser) incentive to reduce the magnitude of this mistake and increase (decrease) their 
price. In the former case, this endogeneity of the costs of mispricing induces greater strategic 
complementarity. In the latter case, it induces strategic substitutability. The exact inequality we 
derive disciplines the magnitudes of these effects in a verifiable way that ensures that strategic 
complementarity always obtains.

The sufficient concavity condition similarly has a “simple” and “complex” interpretation. 
When the losses from mispricing are exogenous, the condition requires that the optimal price 
has a slope less than one in the aggregate price level. This condition that “best responses have 
a slope less than one” is familiar from games without decision frictions. More generally, when 
the aggregate price matters for the losses from mispricing, the “slope” that needs to be bounded 
depends directly on the deviation of the price from the optimal price and the considerations de-
scribed above.

The monotonicity condition (Equation (38)) requires that higher levels of the money supply 
are complementary with higher prices for firms. When the losses from mispricing do not depend 
on the money supply 1−σ−χ(η+1)

σ
+ δ = 0, this condition always holds as factor price pres-

sure from higher money supply (which increases demand, which increases production, which 
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increases marginal costs) makes optimal prices higher. More generally, as above for the endoge-
nous price level, the monotonicity condition ensures complementarity between pricing and the 
exogenous money supply when the losses from mispricing depend on the money supply.

Finally, the condition for monotone precision (Equation (39)) conveys, in terms of deep pa-
rameters, when price-setters optimally respond to lower money and prices by making more 
precise decisions. To understand this, it is useful to first turn off factor price pressure or set 
χ = 0. In this case, the condition corresponds to δ + ( 1

σ
− 1

)
< 0. The first term isolates the role 

of costly planning—when high-money states are less likely (δ < 0), firms optimally put in less 
effort to plan for them, and their pricing decisions in these states are less precise. The second 
term conveys the roles of aggregate demand externalities, which have elasticity 1/σ with respect 
to the money supply, and the stochastic discount factor, which has elasticity −1 with respect to 
the money supply. The demand externality pushes toward high precision in high-demand states, 
because any price mistake leads to more lost sales. The stochastic discount factor pushes toward 
high precision in low-demand states, since profits are more valuable in these states (Flynn and 
Sastry, 2022). Finally, when factor price pressures are re-introduced, they loosen the constraint 
corresponding to incentives from the money supply and tighten the constraint corresponding to 
incentives from aggregate prices.

Economic lessons. Our finding can be used to rationalize empirical findings on the cyclicality 
of price dispersion. Empirically, Alvarez et al. (2019) find that price dispersion among firms in 
Argentina has an elasticity of about 1/3 to the inflation rate in high-inflation periods (e.g., an 
annual rate above 50%) and an elasticity that is positive, but close to zero, in low-inflation pe-
riods. Nakamura et al. (2018) find limited evidence that the dispersion of US prices increased 
in the “Great Inflation” of the 1970s and 1980s, during which annual US inflation was regularly 
between 5% and 10%. This evidence is consistent with the costly planning mechanism, if firms 
believe that hyperinflation states (in Argentina and in the US) are relatively unlikely (δ < 0) 
and are far in the tail of the distribution for M . Intuitively, this allows the possibility that price 
dispersion is especially high in hyperinflations precisely because firms have not precisely formu-
lated plans for these unlikely states. This prediction would not be obtained in standard analysis 
of this model with a state-invariant decision friction, like exogenous information (Hellwig and 
Venkateswaran, 2009).

Moreover, empirical evidence from Brunnermeier et al. (2022) regarding the German hyper-
inflation of the 1920s demonstrates both firms’ unpreparedness and the concrete organizational 
difficulties and “mistakes” that resulted from this. First, Brunnermeier et al. (2022) show how 
markets retained low inflation expectations until the Summer of 1922. This is despite the fact 
that inflation had been abnormally high since 1919. Thus, over this three-year window, people 
seem to remain persistently incorrect regarding inflation. Second, Brunnermeier et al. (2022)
provide an historical account of how the rare, highly inflationary state led to acute organizational 
difficulties in making decisions because of a lack of preparedness. Indeed, a system for “inflation 
accounting” did not exist at that time and this led firms to even make mistakes in constructing 
their own balance sheets. Brunnermeier et al. (2022) write that: “For example, the 1923 financial 
report of Darmstadter und Nationalbank stated that ‘the figures in our balance sheet and profit-
and-loss statement are, as in those of all German companies, unfit for any serious scrutiny, and 
to examine them in detail is folly.’ Similarly, Hoffmann and Walker (2020) provide examples of 
firms noting that the calculation of balance sheets and income in paper marks ‘lost its economic 
meaning’ and that firms only reported financial statements out of legal obligation.”
24



J.P. Flynn and K.A. Sastry Journal of Economic Theory 212 (2023) 105704
4.2. Consumption and savings with a stress externality

Set-up. Each agent is a consumer that lives for infinite periods, indexed by t ∈ N . They choose 
consumption levels cit ∈ R and labor levels nit ∈ R and have quadratic payoffs. They maximize 
expected discounted utility:

U({cit , nit }∞t=0, θd) = (1 + θd)cit − c2
it

2
− χ

n2
it

2
+

∞∑
t=1

δt

(
cit − c2

it

2
− χ

n2
it

2

)
(40)

where δ ∈ (0, 1) is a discount factor, χ is a parameter controlling the labor-leisure trade-off, and 
θd is a demand shock in a discrete set �d , with maximum element θd ≤ 0 and minimal element 
θd > −1, that reduces the household’s relative preference to consume in period 0. Each agent 
can save in a risk-free bond with interest rate R = 1/δ, fixed and unresponsive to demand as in 
a small open economy. Each agent receives income wtnit in each period, where wt ∈ R+ is a 
wage and nit ∈ R is the amount that agent i works. Therefore, for each period t , the agent faces 
a budget constraint cit + bit ≤ wtnit + Rbi,t−1, where bit is savings and bi,−1 = 0 for all agents.

Goods are produced by a representative firm, at which all of the agents work. The firm pro-
duces output via a linear production technology, yt = ∫

[0,1] nit di. In all periods, the output 
market clears as yt = ∫

[0,1] cit di and the bond market clears as 0 = ∫
[0,1] bit di. At t = 0, given 

the fixed interest rate, these conditions would be incompatible with equilibrium in the labor 
market. We therefore make the conventional assumption that, in this period, the firm commits to 
satisfying demand at the (fixed) price, households lie off their labor supply curve, and households 
all work an equal amount. We refer to this period as a liquidity trap, since the market failure is 
caused by the inability of interest rates to adjust downward to accommodate the negative demand 
shock.

We are interested in how equilibrium at t = 0 is affected by demand shocks, under the assump-
tions that households imperfectly optimize and that their cost is affected by financial stress. To 
simplify our analysis, we assume that all choices for t ≥ 1, after the economy exits the liquidity 
trap, are made frictionlessly. At t = 0, households choose ci0 ∈ [c, c], where c < δ

1−δ
, to maxi-

mize expected utility net of cognitive costs, given rational expectations about future aggregates 
and their future behavior.13

We introduce the idea that stress may lead to lower-quality decisions in low-income states 
via the cost functional. This idea is motivated by the experimental findings of Mani et al. 
(2013) suggesting that poverty, transitory or persistent, reduces performance in cognitive tasks. 
Mullainathan and Shafir (2013) hypothesize that involuntary capture of attention toward contem-
plating negative outcomes in these states reduces the available bandwidth to make decisions, and 
therefore makes people more prone to “forgetfulness” and “cognitive slips” (p. 14). We model 
this by letting λ(y, θd) = y−τ , where y is consumers’ period-0 income and τ ≥ 0 is a parameter 
controlling how quickly decision costs increase when income is low. We let the cost-functional 
kernel be any φ that satisfies Assumption 3.

Our model captures in reduced form the diversion of cognitive resources away from the de-
cision of interest for consumption and savings, and hence the scarcity of attention available for 

13 The condition c < δ ensures that consumption in periods t ≥ 1 does not exceed the bliss point.
1−δ
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the decision problem of interest.14 In equilibrium, this diversion will depend on the actions (con-
sumption) of others, because this will determine aggregate demand and, therefore, individuals’ 
income. In this way, our model is motivated by the combination of the experimental and survey 
evidence of Mani et al. (2013) and Sergeyev et al. (2022) about individual-level stress and deci-
sions; the fact that business cycles shift aggregate poverty rates (see, e.g., Meyer and Sullivan, 
2011); and the fact that adverse mental health outcomes and anxiety increase in aggregate during 
economic downturns (see, e.g., Frasquilho et al., 2015).

Recasting the economy as a game. We now analyze the consumer’s problem to reduce the equi-
librium determination of first-period consumption to a game to which our results can be applied. 
It is simple to show that, for t ≥ 1, aggregate output is fixed at a level ȳ > 0 and each agents’ 
consumption is fixed at a specific level which depends on their period 0 savings. This exact 
consumption-smoothing result follows from the intertemporal Euler equation and the simplify-
ing assumption that δR = 1 (see, e.g., Hall, 1978). Next, because the payoff for t ≥ 1 is always 
increasing in period 0 savings, the agent saves all unspent income at t = 0: bi0 = y0 − ci0. Using 
these observations, and defining ci = ci0 and y = ∫

[0,1] ci di, we can re-write the objective as

u(c, y, θd) = α(y, θd) − β(y, θd)(c − γ (y, θd))2 (41)

where15

γ (y, θd) = (1 − m)(θd + ȳ) + my

β(y, θd) = 1

2(1 − m)

(42)

and m = χ(1−δ)
χ+δ

∈ (0, 1) is the agent’s marginal propensity to consume (MPC), which itself de-
pends positively on labor disutility χ and negatively on the discount factor δ. In the limit where 
labor supply is inelastic, or χ → ∞, then m → 1 − δ as is familiar from the permanent income 
hypothesis. The payoff representation is exact, not approximate, since the original payoffs were 
quadratic. We finally observe that the cost shifter can be written as λ(y) = y−τ , because of the 
aforementioned fact that each agent’s income equals aggregate demand in equilibrium in the 
liquidity trap. Our model therefore captures cognitive stress induced by the aggregate business 
cycle; since our model has no individual heterogeneity in income during the liquidity trap, it 
abstracts from this dimension of cognitive stress.

Results and interpretation. Applying our general results, we can provide conditions under 
which a generalized beauty contest has a unique equilibrium with a number of economically 
relevant properties:

Corollary 4. If the following condition holds for all c, y ∈ [c, c] and θd ∈ �d :

0 < m − τ

y
(c − (1 − m)(ȳ + θd) − my) < 1 (43)

14 As a different, and complementary formalization that is consistent with their novel survey evidence, Sergeyev et al. 
(2022) formalize the Mullainathan and Shafir (2013) hypothesis as an involuntary use of time that could otherwise be 
allocated to labor or leisure.
15 A more cumbersome expression for α(y, θd ) is given in Appendix A.10.
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then there exists a unique equilibrium in which (i) the distribution of consumption and aggregate 
output are monotone increasing in the demand shock θd and (ii) the precision of consumption 
is monotone decreasing in the demand shock θd and in aggregate output y. Moreover, if the 
planner’s problem is strictly concave, a necessary condition for the efficiency of the unique equi-
librium is that:

y = ȳ + τ

χ
y−τ−1

c∫
c

φ(p∗(c | θd))dc (44)

Thus, whenever cognitive costs are positive, an efficient allocation in an economy with τ > 0 has 
higher output than an efficient allocation in an economy with τ = 0.

Proof. See Appendix A.10. �
The conditions in Equation (43) follow from the calculation in Lemmas 1 and 4. These 

conditions are trivially satisfied if τ = 0 as higher demand increases income which increases 
consumption (as m > 0), but less than one-for-one since the household discounts the future and 
therefore has an MPC strictly less than one (as m < 1). If τ > 0, then there are potentially 
countervailing forces that affect strategic complementarity. Concretely, when aggregate output 
increases, stress decreases, and agents’ costs of precise optimization fall. If an agent is consum-
ing more than the optimal level, this makes them prone to consume closer to the optimal level and 
lower their consumption, inducing strategic substitutability. Conversely, if an agent is consuming 
less than the optimal level, this makes them prone to consume more and induces additional strate-
gic complementarity. The condition provides the precise conditions under which these concerns 
do not upset total strategic complementarity (consumption increases when income increases) and 
sufficient concavity (consumption increases less than one-for-one). Under these conditions, we 
know that higher demand increases aggregate output (point (i)); that higher demand shifts the 
entire distribution of consumption upward of first-order stochastic dominance (point (ii)); and 
that agents’ actions are more precise in high states, due to their experiencing lower stress and, 
therefore, (endogenously) lower costs of attention in these states.

The second result, the necessary condition for efficiency, conveys that the introduction of the 
stress mechanism increases the optimal level of output. The reason is that the stress mechanism 
creates an externality operating through cognitive costs: if one agent consumes more, increasing 
aggregate demand and output, they reduce stress (cognitive costs) for all other agents. The extent 
of this externality in state θd is proportional to the cognitive cost paid ex post in that state. Thus, 
the externality would disappear were there no cost of cognition. And the extent of cognitive costs 
would not affect the optimal allocation were there no stress and, by implication, no externality 
operating purely through cognition.

Economic lessons. Our prediction for endogenous precision, or higher consumption “mistakes” 
in low output states, is consistent with the evidence from Berger et al. (2023) that the cross-
sectional distribution of US consumption becomes more dispersed in recessions. In our case, this 
result arises because of the equilibrium effect of low income causing stress that worsens deci-
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sionmaking. Our psychological explanation complements mechanisms studied in the literature 
related to the cyclicality of income risk and the role of financial constraints.16

In the emerging literature on how household stress affects decisionmaking, our results com-
plement those in the study of Sergeyev et al. (2022), who use original survey evidence to measure 
the extent of financial stress among US households and to calibrate a macroeconomic model in 
which financial stress distracts from productive labor supply. Our mechanism is different (stress 
reducing decision quality) and makes a different prediction, potentially in line with the data, 
about consumption dispersion.

Our normative results clarify how the stress channel may translate into inefficiency at the 
macro level. In particular, our results rationalize a “paradox of scarcity” logic: by not spending, 
households contribute toward lower overall output, which induces further financial stress for oth-
ers and has psychological costs. This mechanism relies crucially on the endogeneity of income, 
and hence stress, to others’ decisions.

Finally, we note that our analysis contrasts with abstract results in examples studied by Hébert 
and La’O (2022) and Angeletos and Sastry (2023) in two ways. First, we isolate a cognitive 
externality that may be difficult to formalize in a model of costly information acquisition (see 
the discussion of Fact 5 in Section 2.3). Second, we can precisely characterize equilibrium, its 
comparative statics properties, the equilibrium externality, and the optimal direction of policy 
response in an inefficient setting.

5. Extensions

5.1. State-separable vs. mutual information costs

Although its foundations are in information theory, the mutual information model of Sims 
(2003) also makes predictions for stochastic choice or “imperfect optimization.” Decision-
theoretic work by Caplin et al. (2022) characterizes these behavioral predictions, and Woodford 
(2012) and Dean and Neligh (2022) discuss how they match some, but not all, features of im-
perfect perception and choice in the lab. Moreover, in many applications in macroeconomics and 
finance, information choice is unobserved and/or not the focus of predictions per se. Instead, the 
focus is on the aforementioned predictions for imperfect optimization and how they play out in 
equilibrium.

In Appendix B, we contrast the predictions of state-separable and mutual information costs 
as alternative models of stochastic choice in large games. First, extending a result in Matějka 
and McKay (2015), we give abstract conditions under which the predictions of a version of the 
strategic mistakes model with logit costs gives identical predictions to a twin model with mutual 
information costs and a restriction of agents’ (subjective) priors. Relaxing this condition isolates 
the key difference between the models—the mutual information model naturally allows agents 
to anchor toward commonly played actions as if they were “default points.”

Next, we numerically explore a linear beauty contest game (Morris and Shin, 2002; Angeletos 
and Pavan, 2007) under both state-separable and mutual information costs. The model with state-
separable costs predicts a unique equilibrium in which aggregate quantities are monotone in a 
driving shock, consistent with our abstract results. The mutual information model opens the door 

16 Moreover, Sergeyev et al. (2022) find in their original survey that liquidity constraints exacerbate reported psycho-
logical stress related to making economic decisions. Therefore, in practice, the psychological and liquidity-constraint 
channels may reinforce one another in a richer model that accommodates both.
28



J.P. Flynn and K.A. Sastry Journal of Economic Theory 212 (2023) 105704
to multiple equilibria, via coordination on specific support points of action distributions. We 
show how the equilibrium operator in the mutual information model is not a contraction map, 
thus providing an explicit counterexample to the possibility of using this paper’s analytical tools 
to show similar results in a mutual-information setting.

We conclude that, while the information-acquisition underpinning and “anchoring” obser-
vation may be realistic for individual behavior in some applications, these components of the 
mutual information model open up the door to somewhat pathological equilibrium predictions 
and preclude sensible comparative statics analysis. Thus, in situations where researchers are 
concerned primarily with stochastic choice, the strategic mistakes model may be a tractable alter-
native that is still behaviorally rich enough to capture important, experimentally verified features 
of behavior (see Section 2.3).

5.2. State-separable costs in binary-action games

In Online Appendix C, we study strategic mistakes in binary-action games, which are used 
in many applications to capture an extensive margin of adjustment and/or to simplify analysis.17

We derive sufficient conditions on cognitive costs and payoffs to ensure unique and monotone 
equilibria and illustrate our results in the context of a simple investment game with linear payoffs 
(as in Yang, 2015). Unlike the continuous-action games studied in our main analysis, binary-
action supermodular games may have multiple equilibria with small stochastic choice frictions. 
This result hinges on agents’ ability to waver between options that have similar payoffs, but 
are far apart in the action space and induce very different equilibrium externalities. This result 
offers the following insight for researchers interested in well-posed comparative statics and not 
multiplicity per se: a “more complex” continuous-action model, by smoothing out aggregate 
best-response functions, may admit simpler analysis than a comparable binary-action model.

6. Conclusion

This paper introduces a new class of state-separable control costs in large games. We show 
how these costs accommodate a rich class of decision frictions. We provide results on equilibrium 
existence, uniqueness, efficiency, and monotonicity of equilibrium distributions, aggregates, and 
mistakes. We apply these results to make robust equilibrium predictions in two macroeconomic 
applications, respectively to price-setting in a monetary economy and consumption and savings 
in a liquidity trap.

This paper’s analysis of decision frictions in large games may be applicable to many additional 
settings in macroeconomics and finance. In Section 4, we show how to recast price-setting in a 
monetary economy and consumption-savings choice in a liquidity trap as games with common 
payoff-relevant states (the money supply or aggregate demand shock) and strategic complemen-
tarity summarized in payoffs by an aggregator (the price level or real GDP). Angeletos and Lian 
(2016) surveys other settings in macroeconomics and finance with similar characteristics, includ-
ing asset pricing and strategic firm investment.

The following “practical guide” generalizes the steps of Section 4 and may be useful to re-
searchers in macroeconomics and finance who want to make general equilibrium statements 
about the properties of economies that feature decision frictions. First, micro-found payoffs and 

17 See Angeletos and Lian (2016) (in particular, Section 5) for a review of this literature.
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aggregation in the setting of interest. Second, based on an understanding of how imperfect opti-
mization varies across states, specify an appropriate weighting function λ (or a class of plausible 
candidates, whose predictions one wants to contrast). Third, algebraically verify the conditions 
underlying our main results for equilibrium existence, equilibrium uniqueness, monotone com-
parative statics, and equilibrium efficiency. Fourth, use these conditions to generate theoretically 
robust and, potentially, empirically testable predictions.
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Appendix A. Omitted proofs

A.1. Proof of Lemma 1

Proof. Define ũ = u
λ

. Inequality (9) can be re-expressed as:

ũ(x′,X′, θ) + ũ(x,X, θ) ≥ ũ(x′,X, θ) + ũ(x,X′, θ) (45)

which is the statement that ũ is a supermodular function in (x, X). By Topkis’ Characterization 
Theorem (see e.g, Milgrom and Roberts, 1990), when ũ is twice continuously differentiable in 
(x, X), this is equivalent to the statement that ũxX(x, X, θ) ≥ 0. As we have assumed that u and 
λ are both twice continuously differentiable in (x, X), Inequality (9) is equivalent to:

ũxX(x,X, θ) = uxX(x,X, θ) − ux(x,X, θ)
λX(X,θ)
λ(X,θ)

λ(X, θ)
≥ 0 (46)

Inequality (10) can be re-expressed as:

ũ(x′,X + α, θ) + ũ(x − α,X, θ) ≤ ũ(x,X + α, θ) + ũ(x′ − α,X, θ) (47)

Define f (y, γ ; θ, X) = ũ(y + γ, X + γ, θ). Set y′ = x′ − α, y = x − α, γ ′ = α and γ = 0 and 
observe that y′ ≥ y and γ ′ ≥ γ . Inequality (47) is equivalent to:

f (y′, γ ′; θ,X) + f (y, γ ; θ,X) ≤ f (y, γ ′; θ,X) + f (y′, γ ; θ,X) (48)

Which is equivalent to submodularity of f (· ; θ, X) in (y, γ ). Again by Topkis’ Characterization 
Theorem, and by twice continuous differentiability of f in (y, γ ), this is equivalent to:

fyγ (y, γ ; θ,X) = ũxx(y + γ,X + γ, θ) + ũxX(y + γ,X + γ, θ) ≤ 0 (49)

Moreover, ũxx = uxx

λ
. Thus, Inequality (10) is equivalent to:

−uxx(x,X, θ)

λ(X, θ)
≥ ũxX(x,X, θ) = uxX(x,X, θ) − ux(x,X, θ)

λX(X,θ)
λ(X,θ)

λ(X, θ)
(50)

Combining Inequalities (46) and (50) and multiplying by λ > 0, we obtain the claimed result. �
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A.2. Proof of Lemma 3

To establish the result, as the entropy kernel has derivative φ′(x) = 1 + logx and φ′(x) = x, 
it is sufficient to show the following:

Lemma 6. F , the class of functions satisfying quasi-MLRP, contains {log(·), Id(·)}.

Proof. To see that quasi-MLRP is satisfied for f (x) = logx (and 1 + logx), the required condi-
tion (Equation (16)) becomes:( g′(x′)

g′(x)
≥ g(x′)

g(x)
∀x′ ≥ x

)
=⇒ g′ �FOSD g (51)

The left-hand side of this implication is simply the MLRP property. Moreover, MLRP implies 
FOSD. We now prove that f (x) = x satisfies quasi-MLRP. This requires us to prove that for any 
two distributions g′, g ∈ �(X ):(

g′(x′) − g′(x) ≥ g(x′) − g(x) ∀x′ ≥ x
)

=⇒ g′ �FOSD g (52)

To do this, we first prove a technical lemma, which may be of future use for characterizing other 
functions that satisfy quasi-MLRP:

Lemma 7. For any two distributions g′, g ∈ �(X ), the following holds:(
f (g′(x′)) − f (g′(x)) ≥ f (g(x′)) − f (g(x)) ∀x′ ≥ x

)
=⇒(∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
≥

∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
∀x ∈X

)
(53)

Proof. To prove the required implication, we begin with the hypothesis:

f (g′(x′)) − f (g′(x)) ≥ f (g(x′)) − f (g(x)), ∀x′ ≥ x (54)

Which can be rewritten as:

f (g′(x′)) + f (g(x)) ≥ f (g(x′)) + f (g′(x)), ∀x′ ≥ x (55)

We now integrate from x to x′ with respect to x to obtain the inequality:

(x′ − x)f (g′(x′)) +
x′∫

x

f (g(x))dx ≥ (x′ − x)f (g(x′)) +
x′∫

x

f (g′(x))dx (56)

Imposing x′ = x we obtain:

(x − x)
[
f (g′(x)) − f (g(x))

] ≥
x∫

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃ (57)

Applying the same procedure but this time integrating from x to x with respect to x′ and evaluate 
at x′ = x to obtain this inequality:
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x∫
x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃ ≥ (x − x)

[
f (g′(x)) − f (g(x))

]
(58)

Combining our two inequalities we obtain the required one:∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
≥

∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
∀x ∈ X (59)

Which completes the proof. �
Thus, if it can be established that:(∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
≥

∫ x

x

[
f (g′(x̃)) − f (g(x̃))

]
dx̃

x − x
∀x ∈X

)

=⇒ g′ �FOSD g

(60)

then we will have established that function f satisfies quasi-MLRP.
We now use this to prove that f (x) = x satisfies quasi-MLRP. Plugging in to the derived 

integral condition, we obtain:

G(x) − G′(x)

x − x
≥ G′(x) − G(x)

x − x
∀x ∈ X (61)

Re-arranging this:

G(x) ≥ G′(x) ∀x ∈X (62)

which is the definition that g′ �FOSD g. This completes the proof and establishes that quasi-
MLRP is a strict weakening of MLRP. �
A.3. Proof of Proposition 1

Proof. This follows immediately from the step proving the monotonicity and discounting con-
ditions in Theorem 1. Note that this invokes only Assumptions 1 and 3. �
A.4. Proof of Theorem 1

Proof. We first study the problem of a single agent i who is best replying to the conjecture that 
the law of motion of the aggregate is X̂ : � → R. See that this agent faces the problem:

P∗(X̂) = arg max
P∈P

∑
�

∫
X

u(x, X̂(θ), θ)dP(x|θ)π(θ) − c(P, X̂) (63)

First, let us examine the set of stochastic choice rules:

P = {P : � → �(X )} =
∏
θ∈�

�(X ) (64)

See that �(X ) is compact as X is compact. It therefore follows by finiteness of � that P is 
compact.
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Define k :P ×B → R̄, where B = {X̂ : � → R} as:

k(P, X̂) =
∑
�

∫
X

u(x, X̂(θ), θ)dP(x|θ)π(θ) − c(P, X̂) (65)

As φ is strictly convex and u is bounded, it is without loss of optimality to restrict to optimizing 
over the set of stochastic choice rules with density bounded above by some M ∈ R, PM . This 
is a closed set, which is a subset of a compact set P , and therefore also compact. Moreover, 
k is continuous in P , by continuity of u and continuity of c over PM for any M . Thus, by 
Weierstrass’ theorem, there exists a maximum. Moreover, by strict convexity of k(·, X̂), it is 
unique. It immediately follows that in any equilibrium P ∗

i = P ∗ = P∗(X̂) for all i and thus that 
there cannot exist asymmetric equilibria.

To show existence of an equilibrium it suffices to show that there exists a X̂ such that:

X̂ = X ◦P∗(X̂) (66)

To this end define the operator T : B → B such that:

T (X̂) = X ◦P∗(X̂) (67)

We wish to show that T has a fixed point. We will moreover prove that this fixed point is unique 
as under the stated assumptions we can prove that T is a contraction map. To this end, we wish 
to apply Blackwell’s sufficient conditions for an operator to be a contraction. More specifically, 
if T operates on the space of bounded functions and is endowed with the sup norm, then the 
following are sufficient for T to be a contraction:

1. Monotonicity: X̂′ ≥ X̂ =⇒ T (X̂′) ≥ T (X̂) for any X̂′, X̂ ∈ B
2. Discounting: there exists β ∈ (0, 1) such that T (X̂ +α) ≤ T (X̂) +βα for all α ∈R+ and any 

X̂ ∈ B

Toward proving these properties, we first derive some necessary conditions for optimal 
stochastic choice. To this end, see that the stochastic choice program under an equilibrium con-
jecture X̂ is given by:

max
p∈P

∑
�

∫
X

u(x, X̂(θ), θ)dP(x|θ)π(θ) −
∑
�

∫
X

φ(p(x|θ))dx π(θ)λ(X̂(θ), θ) (68)

Take the optimal policy p and now consider a family or perturbations of p around actions x, x′ ∈
X in state θ ∈ � such that p(x|θ; X̂), p(x′|θ; X̂) > 0 by ε > 0 and δ ≥ 0 such that:

p̃(x̃|θ; X̂) = p(x̃|θ; X̂) + ε, x̃ ∈ [x′, x′ − δ]
p̃(x̃|θ; X̂) = p(x̃|θ; X̂) − ε, x̃ ∈ [x, x − δ] (69)

For p that has full support on [x′, x′ − δ], [x, x − δ], we have that p̃ ∈ P . Moreover, as u is 
continuous, if δ is sufficiently small, such a full-support perturbation is possible by the property 
that p(x|θ; X̂), p(x′|θ; X̂) > 0 and the fact that p is optimal.

Taking the derivative of the value of p̃ in ε and evaluating at ε = 0, we obtain the necessary 
optimality condition:
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x′∫
x′−δ

[
u(x̃, X̂(θ), θ)π(θ) − φ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

=
x∫

x−δ

[
u(x̃, X̂(θ), θ)π(θ) − φ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

(70)

Normalizing both sides by δ > 0, we obtain:∫ x′
x′−δ

[
u(x̃, X̂(θ), θ)π(θ) − φ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

δ

=
∫ x

x−δ

[
u(x̃, X̂(θ), θ)π(θ) − φ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

δ

(71)

Taking the limit of both sides as δ → 0, applying L’Hôpital’s rule and Leibniz’s rule we obtain:

u(x′, X̂(θ), θ) − λ(X̂(θ), θ)φ′(p(x′|θ; X̂)) = u(x, X̂(θ), θ) − λ(X̂(θ), θ)φ′(p(x|θ; X̂))

(72)

This condition is necessary for all x, x′ ∈X that have a positive density in state θ .
By the previous necessary condition and the supermodularity assumption (Assumption 1) we 

have that, for all x′ ≥ x in the support of both stochastic choice rules, all θ , and any conjectures 
X̂ and X̂′ such that X̂′ ≥ X̂:

φ′(p(x′|θ; X̂′)) − φ′(p(x|θ; X̂′)) = u(x′, X̂′(θ), θ)

λ(X̂′(θ), θ)
− u(x, X̂′(θ), θ)

λ(X̂′(θ), θ)

≥ u(x′, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x, X̂(θ), θ)

λ(X̂(θ), θ)

= φ′(p(x′|θ; X̂)) − φ′(p(x|θ; X̂))

(73)

We now need to check the cases where the stochastic choice rules do not have full support. Define 
the support in state θ under law of motion X̂ as X (θ, X̂) = clX {x ∈ X : p∗(x|θ, X ) > 0}. Let 
x̂ ∈ X (θ, X̂), x̃ ∈ X (θ, X̂′) and define x′ = max{x̂, x̃}, x = min{x̂, x̃}. We proceed to show that 
X (θ, X̂) is monotone in the strong set order in X̂. That is, for X̂′ ≥ X̂, we have that x′ ∈X (θ, X̂′)
and x ∈ X (θ, X̂). By Assumption 1, u is a concave function of x. This implies that X (θ, X̂) is an 
interval. We will denote its lower end-point by x(θ, X̂) and its upper end-point by x(θ, X̂). We 
also note that p(x(θ, X̂)|θ, X̂) = p(x(θ, X̂)|θ, X̂) = 0. Showing that X (θ, X̂) is increasing in the 
strong set order therefore reduces to showing that x(θ, X̂) ≤ x(θ, X̂′) and x(θ, X̂) ≤ x(θ, X̂′). 
Without loss of generality (the other case follows by identical arguments), we will show that 
x(θ, X̂) ≤ x(θ, X̂′).

Toward a contradiction, suppose that x(θ, X̂) > x(θ, X̂′). There are two cases to consider: 
the case in which the supports strictly overlap x(θ, X̂) < x(θ, X̂′), and the case in which they 
do not x(θ, X̂) ≥ x(θ, X̂′). First, consider the case in which x(θ, X̂) < x(θ, X̂′). By continuity 
of p(·|θ, X̂′) and p(·|θ, X̂), the fact that 0 = p(x(θ, X̂)|θ, X̂) < p(x(θ, X̂)|θ, X̂′), and the fact 
that p(x|θ, X̂) > 0 for x ∈ (x(θ, X̂), x(θ, X̂′)), there exists an x ∈ (x(θ, X̂), x(θ, X̂′)) such that 
p(x|θ, X̂′) > p(x|θ, X̂). Fix also any x′ ∈ (x(θ, X̂′), x(θ, X̂)). Consider a perturbation, as per 
34



J.P. Flynn and K.A. Sastry Journal of Economic Theory 212 (2023) 105704
Equation (69) that moves density from (a neighborhood of) x to (a neighborhood of) x′ in state 
θ under conjecture X̂′. We have that the following holds:

φ′(0) − φ′(p(x|θ, X̂′)) < φ′(p(x′|θ, X̂)) − φ′(p(x|θ, X̂))

= u(x′, θ, X̂(θ))

λ(X̂(θ), θ)
− u(x, θ, X̂(θ))

λ(X̂(θ), θ)

≤ u(x′, θ, X̂′(θ))

λ(X̂′(θ), θ)
− u(x, θ, X̂′(θ))

λ(X̂′(θ), θ)

(74)

where the first line follows from the strict convexity of φ, the fact that p(x′|θ, X̂) > 0, and the fact 
that p(x|θ, X̂′) > p(x|θ, X̂). The second line follows from the optimality of p(·|θ, X̂). The third 
line follows by Assumption 1. However, Equation (74) implies that the considered perturbation 
provides a strict gain relative to p(·|θ, X̂′), which contradicts the optimality of p(·|θ, X̂′).

Consider now the case in which x(θ, X̂) ≥ x(θ, X̂′). By the fact that p(·|θ, X̂) is strictly 
preferred to p(·|θ, X̂′) when the aggregate follows X̂, we have that:

x(θ;X̂)∫
x(θ;X̂)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂)dx −

x(θ;X̂′)∫
x(θ;X̂′)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂′)dx

>

x(θ;X̂)∫
x(θ;X̂)

φ(p(x|θ, X̂))dx −
x(θ;X̂′)∫

x(θ;X̂′)

φ(p(x|θ, X̂′))dx

(75)

Moreover, as x(θ, X̂) > x(θ, X̂′), we have by Assumption 1 that:

x(θ;X̂)∫
x(θ;X̂)

u(x, X̂′(θ), θ)

λ(X̂′(θ), θ)
p(x|θ, X̂)dx −

x(θ;X̂′)∫
x(θ;X̂′)

u(x, X̂′(θ), θ)

λ(X̂′(θ), θ)
p(x|θ, X̂′)dx

≥
x(θ;X̂)∫

x(θ;X̂)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂)dx −

x(θ;X̂′)∫
x(θ;X̂′)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂′)dx

(76)

Combining these inequalities, we obtain that:

x(θ;X̂)∫
x(θ;X̂)

u(x, X̂′(θ), θ)p(x|θ, X̂)dx − λ(X̂′(θ), θ)

x(θ;X̂)∫
x(θ;X̂)

φ(p(x|θ, X̂))dx >

x(θ;X̂′)∫
x(θ;X̂′)

u(x, X̂′(θ), θ)p(x|θ, X̂′)dx − λ(X̂′(θ), θ)

x(θ;X̂′)∫
x(θ;X̂′)

φ(p(x|θ, X̂′))dx

(77)

which implies that p(·|θ, X̂) is strictly better than p(·|θ, X̂′) when the aggregate follows X̂′, 
which contradicts the optimality of p(·|θ, X̂′).
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Thus, we have shown that X (θ, X̂) is monotone in the strong set order in X̂ and we have 
derived (by Equation (72)) that:

φ′(p(x′|θ; X̂′)) − φ′(p(x|θ; X̂′)) ≥ φ′(p(x′|θ; X̂)) − φ′(p(x|θ; X̂)) (78)

for all x′ ≥ x such that x′, x ∈ X (θ, X̂) ∩X (θ, X̂′). Thus, if φ′ satisfies quasi-MLRP (Assump-
tion 3), then we have that p(θ; X̂′) �FOSD p(θ; X̂) for all θ . It then follows by the monotonicity 
property of the aggregator (Assumption 2) that X(p(θ; X̂′)) ≥ X(p(θ; X̂)) for all θ and there-
fore that T (X̂′) ≥ T (X̂), which establishes the required monotonicity property of the equilibrium 
operator.

We now prove discounting. To this end, we will show that when we take X̂′ = X̂ + α for 
α ∈ R+ that the resulting stochastic choice is dominated by an α right translation of the original 
stochastic choice under X̂. Under this transformation, observe by the necessary condition for 
optimality and the sufficient concavity condition on utility (Assumption 1), we can apply the 
same arguments as above to derive that for all x′ ≥ x such that x′, x ∈ X (θ, X̂) ∩X (θ, X̂ + α):

φ′(p−α(x′|θ; X̂)) − φ′(p−α(x|θ, X̂)) = u(x′ − α, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x − α, X̂(θ), θ)

λ(X̂(θ), θ)

≥ u(x′, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)
− u(x, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)

= φ′(p(x′|θ; X̂ + α)) − φ′(p(x|θ; X̂ + α))

(79)

We now show that x(θ, X̂) + α ≥ x(θ, X̂ + α) and x(θ, X̂) + α ≥ x(θ, X̂ + α). Without loss 
of generality (the other case follows by identical arguments), we will show that x(θ, X̂) + α ≥
x(θ, X̂ + α). Toward a contradiction, suppose that x(θ, X̂) + α < x(θ, X̂ + α). As in the previ-
ous argument, there are two cases to consider, the case in which the supports strictly overlap 
x(θ, X̂) + α > x(θ, X̂ + α) and the case in which the supports are disjoint x(θ, X̂) + α ≤
x(θ, X̂ + α). In the overlapping support case, fix an x ∈ (x(θ, X̂ + α), x(θ, X̂) + α) such that 
p−α(x|θ, X̂) > p(x|θ, X̂+α) > 0 (which is possible by the same arguments used in the first part 
of the proof). Fix next a point x′ ∈ (x(θ, X̂) + α, x(θ, X̂ + α)). And consider a perturbation that 
moves density from x − α to x′ − α in state θ under conjecture X̂. The following holds:

φ′(0) − φ′(p−α(x|θ, X̂)) < φ′(p(x′|θ, X̂ + α)) − φ′(p(x|θ, X̂ + α))

= u(x′, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)
− u(x, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)

≤ u(x′ − α, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x − α, X̂(θ), θ)

λ(X̂(θ), θ)

(80)

where the first inequality follows by construction, the second by optimality, and the third by 
Assumption 1. This contradicts the optimality of p(·|θ, X̂). In the non-overlapping case, we can 
follow the same steps as the first part of the proof, adapted in the obvious way (using the sufficient 
concavity inequality in place of the supermodularity inequality).

Thus, by quasi-MLRP of φ′ (Assumption 3), we have that p−α(θ, X̂) �FOSD p(θ, X̂ + α)

where p−α is the described right translation by α of p. Moreover, by the discounting property of 
the aggregator (Assumption 2), we then have that:

T (X̂ + α) ≤ X ◦ p−α(X̂) ≤ T (X̂) + βα (81)
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which establishes the discounting property of T . We have now shown that T satisfies Blackwell’s 
sufficient conditions and is a contraction map. By the Banach fixed point theorem, there then 
exists a unique equilibrium �. �
A.5. Proof of Theorem 2

Proof. To show that the unique equilibrium aggregate law of motion of monotone in θ , we use 
Corollary 1 from Chapter 3 of Stokey et al. (1989).

Define the set of monotone increasing and bounded functions M = {X̂ ∈ B|X̂(θ ′) ≥
X̂(θ) ∀θ, θ ′ ∈ � : θ ′ ≥ θ}. See that this set is closed. If we can show that T (X̂) ∈ M for any 
X̂ ∈ M, then we know that the unique fixed point of T is in M and therefore that the unique 
equilibrium law of motion is in M according to Corollary 1 of Stokey et al. (1989). To this end, 
we wish to show that:

X̂(θ ′) ≥ X̂(θ) ∀θ, θ ′ ∈ � : θ ′ ≥ θ =⇒ T (X̂)(θ ′) ≥ T (X̂)(θ) ∀θ, θ ′ ∈ � : θ ′ ≥ θ (82)

This follows immediately from the necessary condition used in the proof of Theorem 1. More 
precisely, by the necessary optimality condition (Equation (72)) from the proof of Theorem 1
and Assumption 4, we have that for all x′ ≥ x such that x′, x ∈X (θ) ∩X (θ ′)

φ′(p(x′|θ ′, X̂)) − φ′(p(x|θ ′, X̂)) ≥ u(x′, X̂(θ ′), θ ′)
λ(X̂(θ ′), θ ′)

− u(x, X̂(θ ′), θ ′)
λ(X̂(θ ′), θ ′)

≥ u(x′, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x, X̂(θ), θ)

λ(X̂(θ), θ)

= φ′(p(x′|θ, X̂)) − φ′(p(x|θ, X̂))

(83)

In the case where optimal action distributions do not have full support, the same arguments 
for the monotonicity of X (θ, X̂) imply monotonicity of X (θ) = X (θ, X̂(θ)) in the strong set 
order when X̂ is monotone increasing. Thus, by the quasi-MLRP property of φ′ (Assumption 3) 
we then have that p(θ ′; X̂) �FOSD p(θ; X̂) and thus by the monotonicity of the aggregator 
(Assumption 2) that T (X̂)(θ ′) ≥ T (X̂)(θ). �
A.6. Proof of Theorem 3

Proof. Recall also by Theorem 1, that the unique symmetric stochastic choice rule consistent 
with the unique equilibrium X̂ solves the following program:

p ∈ arg max
p∈P

∑
�

∫
X

u(x, X̂(θ), θ)dP(x|θ)π(θ) −
∑
�

∫
X

φ(p(x|θ))dx π(θ)λ(X̂(θ), θ)

(84)

where we will suppress the dependence of the optimal policy on X̂ as it is unique. Applying the 
necessary optimal condition from the proof of Theorem 1 (Equation (72)), for a given x such that 
p(x|θ) > 0, we have that:

u(γ (X̂(θ), θ), X̂(θ), θ) − u(x, X̂(θ), θ)

= λ(X̂(θ), θ)
(
φ′(p(γ (X̂(θ), θ)|θ)) − φ′(p(x|θ))

) (85)
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Under Assumption 5, we moreover have that

u(x,X, θ) = α(X, θ) − β(X, θ)�(|x − γ (X, θ)|) (86)

Thus our necessary condition simplifies to:

β(X̂(θ), θ)

λ(X̂(θ), θ)
�(|x − γ (X̂(θ), θ)|) = φ′(p(γ (X̂(θ), θ)|θ)) − φ′(p(x|θ)) (87)

Now consider any θ, θ ′ such that β̃(θ ′, X̂(θ ′)) ≥ β̃(θ, X̂(θ)) (where β̃ = β
λ

). Note that, by 
Theorem 2, the aggregate X̂ is monotone increasing in the state θ . Thus if β̃(θ, X) is decreasing 
in both arguments, the stated case corresponds to θ ′ ≤ θ . If instead β̃(θ, X) is increasing in both 
arguments, the stated case corresponds to θ ′ ≥ θ . Therefore, to verify the desired result, we now 
prove that the action distribution in state θ ′ is more precise about γ (θ ′, X̂(θ ′)) than the action 
distribution in state θ is about γ (θ, X̂(θ)), with respect to φ′.

To that end, we take x, x′ such that:

|x − γ (X̂(θ), θ)| = |x′ − γ (X̂(θ ′), θ ′)| (88)

It follows that:

φ′(p(γ (X̂(θ), θ)|θ)) − φ′(p(x|θ)) = β̃(X̂(θ), θ)�(|x − γ (X̂(θ), θ)|)
≥ β̃(X̂(θ ′), θ ′)�(|x′ − γ (X̂(θ ′), θ ′)|)
= φ′(p(γ (X̂(θ ′), θ ′)|θ ′)) − φ′(p(x′|θ))

(89)

We now take care of those points that have no density. To this end consider the first-order condi-
tion for p(x|θ):

u(x, X̂(θ), θ) − φ′(p(x|θ)) − λ(θ) − κ(x, θ) = 0 (90)

where λ(θ) is the Lagrange multiplier on the constraint that 
∫
X p(x|θ) = 1 and κ(x, θ) is the 

Lagrange multiplier on the constraint that p(x|θ) ≥ 0. When p(x|θ) = 0, we have that κ(x, θ) ≤
0. Given our assumption on utility, this is given by:

κ(x, θ) = −β(X̂(θ), θ)�(|x − γ (X̂(θ), θ)|) + α(X̂(θ), θ) − λ(θ) (91)

which is monotonically decreasing in |x − γ (X̂(θ), θ)|. Thus, if there is an x such that p(x|θ) =
0, then there exists an x̄(θ) such that p(x|θ) = 0 if and only if |x − γ (X̂(θ), θ)| ≥ |x̄(θ) −
γ (X̂(θ), θ)|. Moreover, by monotonicity of β̃(X̂(θ), θ) in θ , we have that |x̄(θ) − γ (X̂(θ), θ)| ≤
|x̄(θ ′) −γ (X̂(θ ′), θ ′)|. Hence, so long as x ∈ [γ (X̂(θ), θ) − x̄(θ), γ (X̂(θ), θ) + x̄(θ)], we always 
have that x′ ∈ [γ (X̂(θ ′), θ ′) − x̄(θ ′), γ (X̂(θ ′), θ ′) + x̄(θ ′)]. Thus, every element of the support 
of p(θ) satisfies:

φ′(p(γ (X̂(θ), θ)|θ)) − φ′(p(x|θ)) ≥ φ′(p(γ (X̂(θ ′), θ ′)|θ ′)) − φ′(p(x′|θ)) (92)

It follows then by the definition of precision that p(θ) is more precise about γ (X̂(θ), θ) than 
p(θ ′) about γ (X̂(θ ′), θ ′) under φ′. �
A.7. Proof of Theorem 4

Proof. By Assumption 6, there is a unique efficient stochastic choice rule P E . Moreover, for any 
x, x′ ∈ X and θ ∈ � such that pE(x|θ) > 0 and pE(x′|θ) > 0, by the same variational arguments 
used in the Proof of Theorem 1, and exploiting linearity of the aggregator we have that:
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u(x′,X(pE(θ)), θ) − u(x,X(pE(θ)), θ)

+ [f (x′) − f (x)]
∫
X

uX(x̃,X(pE(θ)), θ)pE(x̃|θ)dx̃

= λ(X(pE(θ)), θ)
(
φ′(pE(x′|θ)) − φ′(pE(x|θ))

)
+ [f (x′) − f (x)]λX(X(pE(θ)), θ)

∫
X

φ(pE(x̃|θ))dx̃

(93)

is necessary for optimality of pE . Moreover, if the efficient stochastic choice rule obtains in 
equilibrium, we have that (by Equation (72)):

u(x′,X(pE(θ)), θ) − u(x,X(pE(θ)), θ)

= λ(X(pE(θ)), θ)
(
φ′(pE(x′|θ)) − φ′(pE(x|θ))

) (94)

These conditions coincide if and only if:

[f (x′) − f (x)]
∫
X

uX(x̃,X(pE(θ)), θ)pE(x̃|θ)dx̃

= [f (x′) − f (x)]λX(X(pE(θ)), θ)

∫
X

φ(pE(x̃|θ))dx̃

(95)

As f is nowhere-constant, f (x′) �= f (x), and this condition reduces to:∫
X

uX(x̃,X(pE(θ)), θ)pE(x̃|θ)dx̃ = λX(X(pE(θ)), θ)

∫
X

φ(pE(x̃|θ))dx̃ (96)

Substituting in pE = p∗, we obtain the statement in the claim. �
A.8. Statement and Proof of Lemma 8

In this appendix, we state and prove a Lemma that specializes several of main results to the 
case with quadratic payoffs of the form

u(x,X, θ) = α(X, θ) − β(X, θ)(x − γ (X, θ))2 (97)

In the statement below, we use the definition β̃(X, θ) = β(X, θ)/λ(X, θ). We also define the 
bias and dispersion of a stochastic choice rule P in state θ around optimal point γ (X(P ), θ) as

Bias[P, θ ] ≡
∫
X

(x − γ (X(P ), θ)) dP (x|θ)

Disp[P, θ ] ≡
⎛
⎝∫
X

(x − γ (X(P ), θ))2 dP (x|θ)

⎞
⎠

1
2

(98)

Lemma 8. Suppose that Assumptions 2 and 3 hold and that payoffs are given by Equation (97). 
The following properties hold under the additional stated conditions.
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1. Uniqueness. There exists a unique equilibrium if the following holds for all x ∈ X , X ∈ X
and θ ∈ �:

−(1 − γX(X, θ)) <
β̃X(X, θ)

β̃(X, θ)
(x − γ (X, θ)) < γX(X, θ) (99)

2. Monotone actions. The cross-sectional distribution of actions and the aggregate action X are 
monotone in the fundamental if, in addition to the condition (99), the following holds for all 
X ∈ X , x ∈X , and θ ∈ �18:

β̃θ (X, θ)

β̃(X, θ)
(x − γ (X, θ)) < γθ (X, θ) (100)

3. Monotone precision. The precision of actions about the optimal action γ under φ′ is de-
creasing (increasing) in the strength of fundamentals if, in addition to (99) and (100), β̃ is 
monotone decreasing (increasing) in both arguments.

4. Efficiency. A necessary condition for efficiency of the stochastic choice rule P ∗ under As-
sumption 6 is that, for all θ ,

λX(X(P ∗(θ)), θ)

∫
X

φ(p∗(x | θ))dx

=αX(X(P ∗(θ)), θ) − βX(X(P ∗(θ)), θ)(Disp[P ∗(θ), θ ])2

+ 2γX(X(P ∗(θ)), θ)β(X(P ∗(θ)), θ)Bias[P ∗(θ), θ ]

(101)

Proof. We have directly assumed that Assumptions 2, 3 and 5 hold. The first claim follows so 
long as condition (99) implies Assumption 1, Supermodularity and Sufficient Concavity, for the 
outcome-equivalent game with payoff curvature β̃ and associated payoff ũ.

For supermodularity, it is sufficient to show that ũxX(x, X, θ) > 0. We observe that 
ũxX = −2β̃X(X, θ)(x − γ (X, θ)) + 2γX(X, θ)β̃(X, θ) This condition simplifies to γX(X, θ) >
β̃X(X,θ)

β̃(X,θ)
(x − γ (X, θ)), which is the second inequality of Equation (99).

For sufficient concavity, it is sufficient to show that |ũxx(X, θ)| > ũxX(x, X, θ). Observe that 
|ũxx(X, θ)| = 2β̃(X, θ). The condition

2β̃(X, θ) > ũxX = −2β̃X(X, θ)(x − γ (X, θ)) + 2γX(X, θ)β̃(X, θ) (102)

simplifies to the first inequality of Equation (99): −(1 − γX(X, θ)) < β̃X(X,θ)

β̃(X,θ)
(x − γ (X, θ)).

The second claim of the Lemma follows so long as condition (100) implies Assumption 4. 
To see this, as we have already that ũxX(x, X, θ) > 0 for all x, X, θ , it is sufficient to check 
that ũxθ (x, X, θ) > 0 for all x, X, θ . We note that ũxθ (x, X, θ) = −2β̃θ (X, θ)(x − γ (X, θ)) +
2γθ (X, θ)β̃(X, θ) and re-arrange to the desired expression.

The third claim follows directly by Theorem 3 as the payoffs in Equation (97) satisfy As-
sumption 5.

The fourth claims follow by Theorem 4. Recall from Theorem 4 that a necessary condition 
for efficiency of an equilibrium P ∗ under Assumption 6 is that:

18 Where, for simplicity, we allow β to be defined for all states in a closed interval that contains �, and assume it is 
differentiable in its second argument.
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∫
X

uX(x̃,X(P ∗(θ)), θ)dP ∗(x̃|θ) = λX(X, θ)

∫
X

φ(p∗(x | θ))dx (103)

for all θ ∈ �. Using the payoff function, we calculate:

uX(x,X, θ) = αX(X, θ) − βX(X, θ)(x − γ (X, θ))2 + 2γX(X, θ)β(X, θ)(x − γ (X, θ))

(104)

Plugging this into the necessary condition and evaluating at the equilibrium aggregate X̂(θ) =
X(P ∗(θ)), we obtain:∫

X

uX(x̃,X(P ∗(θ)), θ)dP ∗(x̃|θ)

=
∫
X

[
αX(X(P ∗(θ)), θ) − βX(X(P ∗(θ)), θ)(x̃ − γ (X(P ∗(θ)), θ))2

+ 2γX(X(P ∗(θ)), θ)β(X(P ∗(θ)), θ)(x̃ − γ (X(P ∗(θ)), θ))
]

dP ∗(x̃|θ)

(105)

Which can be rewritten in terms of the equilibrium bias and variance with respect to γ as:∫
X

uX(x̃,X(P ∗(θ)), θ)dP ∗(x̃|θ)

=αX(X(P ∗(θ)), θ) − βX(X(P ∗(θ)), θ)
(
Disp[P ∗(θ), θ ])2

+ 2γX(X(P ∗(θ)), θ)β(X(P ∗(θ)), θ)Bias[P ∗(θ), θ ]

(106)

as desired. �
A.9. Proof of Corollary 3

We first derive the payoff representation of Equation (32). This is a second-order approxima-
tion of the payoff function in Equation (31), reprinted here:

u(pi,P,M) = M
1−σ
σ P η− 1

σ

(
pi − M

χ
σ P 1− χ

σ

)
p

−η
i (107)

We first calculate

up(pi,P,M) = M
1−σ
σ P η− 1

σ

(
(−η + 1)p

−η
i + ηM

χ
σ P 1− χ

σ p
−η−1
i

)
upp(pi,P,M) = M

1−σ
σ P η− 1

σ

(
η(η − 1)p

−η−1
i − η(η + 1)M

χ
σ P 1− χ

σ p
−η−2
i

) (108)

We define γ (P, M) as the (unique) solution to up(pi, P, M)|pi=γ (P,M) = 0. Re-arranging:

0 = M
1−σ
σ P η− 1

σ

(
(−η + 1)γ (P,M)−η + ηM

χ
σ P 1− χ

σ γ (P,M)−η−1
)

0 =
(
(−η + 1) + ηM

χ
σ P 1− χ

σ γ (P,M)−1
)

γ (P,M) = η
M

χ
σ P 1− χ

σ

(109)
η − 1
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We define α(P, M) = u(γ (P, M), P, M). We first observe that

γ (P,M) − M
χ
σ P 1− χ

σ = 1

η − 1
M

χ
σ P 1− χ

σ (110)

Then, by direct calculation,

α(P,M) = M
1−σ
σ P η− 1

σ

(
1

η − 1
M

χ
σ P 1− χ

σ

)(
η

η − 1

)−η

M−η
χ
σ P −η+η

χ
σ

= 1

η − 1

(
η

η − 1

)−η

M
1−σ+χ(1−η)

σ P η− 1
σ

+(1−η)(1− χ
σ

)

(111)

as desired
We define β(P, M) = − 1

2upp(pi, P, M)|p=γ (P,M). We first observe that

(η − 1)γ (P,M) − (η + 1)M
χ
σ P 1− χ

σ = −M
χ
σ P 1− χ

σ (112)

Then, by direct calculation,

β(P,M) = −1

2

(
M

1−σ
σ P η− 1

σ ηγ (P,M)−η−2
(
(η − 1)γ (M,P ) − (η + 1)M

χ
σ P 1− χ

σ

))
= 1

2

(
M

1−σ
σ P η− 1

σ ηγ (P,M)−η−2M
χ
σ P 1− χ

σ

)

= 1

2

(
M

1−σ
σ P η− 1

σ η

(
η

η − 1
M

χ
σ P 1− χ

σ

)−η−2

M
χ
σ P 1− χ

σ

)

= η

2

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ P −1− 1
σ

+(η+1)
χ
σ

(113)

as required. We finally observe that, since λ(M) = 1
π(M)

= KM−δ (where K is a normalizing 
constant), we have

β̃(P ,M) = β(P,M)

λ(P,M)
= η

2K

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ
+δP −1− 1

σ
+(η+1)

χ
σ (114)

We now apply the conditions of Lemma 8 to prove the stated result. We first calculate that

γP (P,M) =
(

1 − χ

σ

) γ (P,M)

P

β̃P (P,M)

β̃(P,M)
= P −1

(
−1 − 1

σ
+ (η + 1)

χ

σ

)
(115)

Applying the condition of Equation (99), we get

−
(

1 −
(

1 − χ

σ

) γ (P,M)

P

)
< P −1

(
−1 − 1

σ
+ (η + 1)

χ

σ

)
(p − γ (P,M))

<
(

1 − χ

σ

) γ (P,M)

P

(116)

Since χ/σ < 1, we divide all three expressions by 
(
1 − χ

σ

)
γ (P, M)/P to get

−
(

P

γ (P,M)
(
1 − χ ) − 1

)
<

−1 − 1
σ

+ (η + 1)
χ
σ(

1 − χ ) (
p

γ (P,M)
− 1

)
< 1 (117)
σ σ
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as desired.
We next verify a condition for monotone aggregates. We first calculate:

γM(P,M) = χ

σ

γ (P,M)

M
,

β̃M(P,M)

β̃(P,M)
= M−1

(
1 − σ − χ(η + 1)

σ
+ δ

)
(118)

We then apply Equation (100):

M−1
(

1 − σ − χ(η + 1)

σ
+ δ

)
(p − γ (P,M)) <

χ

σ

γ (P,M)

M
(119)

Dividing both sides by γ (P, M)χ/(Mσ), this becomes

1 − σ − χ(η + 1) + δσ

χ

(
p

γ (P,M)
− 1

)
< 1 (120)

We finally derive a condition for monotone precision. For this, we need β̃ to decrease in both 
M and P . This respectively requires:

0 >
1 − σ − χ(η + 1)

σ
+ δ

0 > −1 − 1

σ
+ (η + 1)

χ

σ

(121)

Re-arranging these inequalities gives the desired condition,

χ(η + 1) ∈ (1 + σ(δ − 1),1 + σ) (122)

A.10. Proof of Corollary 4

Proof. We first derive the payoff representation of Equations (41) and (42). To this end, we begin 
by deriving the consumer’s choices at t ≥ 1. At t = 1, given savings bi0 from the first period, 
each consumer i solves the following program at t = 1:

max
{cit ,nit }∞t=1

∞∑
t=1

δt

(
cit − c2

it

2
− χ

n2
it

2

)

∞∑
t=1

cit

Rt
≤ bi0 +

∞∑
t=1

wtnit

Rt

(123)

where bi0 = y0 − ci0 is the agent’s savings from t = 0. This problem is concave in all arguments. 
Letting κ denote the Lagrange multiplier on the constraint, we find first-order conditions δt(1 −
cit ) = κR−t for each cit and δtχnit = wtκR−t for each nit . Using δR = 1, we transform the 
former into κ = 1 − cit for all t . This implies that consumption is constant. Plugging this into 
the labor-supply condition, we derive nit = 1

χ
wt (1 − cit ). This is also constant, if consumption 

is constant.
We next prove that output is identically equal to yt = ȳ for t ≥ 1 and solve for ȳ. Profit 

maximization for the firm implies that the firm elastically demands labor at the wage wt = 1. 
Evaluated at this wage, labor supply for each agent i is nit = 1

χ
(1 − cit ). Integrating both sides 

over i, we get nt = 1
χ
(1 − ct ). Substituting in the production function and market clearing, this 

becomes yt = 1 (1 − yt ). Therefore, yt = ȳ = 1 .

χ 1+χ
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To derive the household’s consumption and labor supply, we return to the budget constraint 
and simplify it by plugging in constant consumption cit = ci1, labor demand, and wt = 1, and by 
simplifying the sums:

1

1 − R−1 ci1 ≤ Rbi0 + 1

1 − R−1

1

χ
(1 − ci1) (124)

Rearranging, we write

ci1 ≤ χ

1 + χ

1 − δ

δ
bi0 + ȳ (125)

This holds at equality if the right-hand-side is less than 1 (the agent’s bliss point). This is guar-
anteed under the maintained assumption that bi0 ≤ c < δ/(1 − δ). We finally write the value 
function from Equation (123) as V (bi0). And we observe from the envelope theorem that

V ′(bi0) = κ = 1 − χ

1 + χ

1 − δ

δ
bi0 − ȳ (126)

We now return to the payoff of the consumer at time 0, who chooses consumption given 
rational expectations about this future equilibrium path and their future choices. For notational 
simplicity, we let ci0 = c and y0 = y. The agent’s payoff is

U(c, y, θd) = (1 + θd)c − c2

2
− χ

y2

2
+ V (y − c) (127)

Note that all agents are off their labor supply curve and work y labor hours.
We now derive the form in Equation (41). We first observe that Uc(c, y, θd)|c=γ (y,θd ) = 0. 

Taking the first derivative,

Uc(c, y, θd) = (1 + θd) − c − V ′(y − c)

= (1 + θd) − c −
(

1 − χ

1 + χ

1 − δ

δ
(y − c) − ȳ

)
(128)

We next use Uc(c, y, θd)|c=γ (y,θd ) = 0 and rearrange to write

γ (y, θd) = (1 − m)(θd + ȳ) + my (129)

where m = χ(1−δ)
χ+δ

is the marginal propensity to consume.
We next observe that −Ucc(c, y, θd) = 2β(y, θd). We calculate, from above,

Ucc = − 1

1 − m
, β(y, θd) = 1

2(1 − m)
(130)

Moreover, we have β̃(y, θd) = β(y, θd)/λ(y, θd) = 1
2(1−m)

yτ .
We finally observe that U(c, y, θd)|c=γ (y,θd ) = α(y, θd). We therefore define

α(y, θd) = (1 + θd)γ (y, θd) − γ (y, θd)2

2
− χ

y2

2
+ V (y − γ (y, θd)) (131)

Having verified the payoff representation, we now prove the claim by applying Lemma 8. 
First, to show uniqueness, we specialize the condition in Equation (99). We note that

γy(y, θd) = m

β̃y(y, θd)

˜ = τy−1
(132)
β(y, θd)
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Using these expressions, we derive the condition that, for all y, c ∈ [c, c] and θd ∈ �d ,

−(1 − m) <
τ

y
(c − (1 − m)(ȳ + θd) − my) < m (133)

We re-arrange this algebraically to

0 < m − τ

y
(c − (1 − m)(ȳ + θd) − my) < 1 (134)

Next, to show monotonicity, we observe that β̃θd
(y, θd) = 0, and hence Equation (100) reduces 

to γθd
(y, θd) > 0, which is by assumption when δ > 0 and χ > 0.

Next, to show monotone precision, we observe that β̃(y, θd) = yτ

δ
is monotone increasing in 

X, which from Lemma 8 implies that precision in increasing in fundamentals.
Finally, to show efficiency, we plug directly into Equation (101). We first use the definition of 

α and the envelope theorem to observe that

αy(y, θd) = Uy(c, y, θd)|c=γ (y,θd ) + γc(y, θd)Uc(c, y, θd)|c=γ (y,θd )

= Uy(c, y, θd)|c=γ (y,θd )

(135)

We then calculate

Uy(c, y, θd) = −χy + V ′(y − c)

= −χy + 1 − χ

1 + χ

1 − δ

δ
(y − c) − ȳ

= −χy + 1 − m

1 − m
(y − c) − ȳ

(136)

where in the last line we use the definition of m.
We next observe that

λy(y, θd) = −τy−τ−1 γy(y, θd) = m β(y, θd) = 1

2(1 − m)
(137)

Finally, because of linear aggregation,

Bias[P, θd ] =
∫
X

(x − γ (y(P ), θd)) dP (x|θd) = y − γ (y, θd) (138)

Using all of this, we re-write the condition for efficiency (Equation (101)) as

−τy−τ−1
∫
X

φ(p∗(x | θd))dx = −χy + 1 − m

1 − m
(y − γ (y, θd)) − ȳ

+ m

1 − m
(y − γ (y, θd))

= −χy + 1 − ȳ

(139)

This re-arranges to

y = ȳ + τ

χ
y−τ−1

∫
X

φ(p∗(x | θd))dx (140)

When τ = 0, the solution to the fixed-point equation is y = ȳ. When τ > 0, then
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y − ȳ = τ

χ
y−τ−1

∫
X

φ(p∗(x | θd))dx (141)

The right-hand side is weakly positive under the assumption that cognitive costs in each state are 
positive. Thus, a necessary condition for efficiency is that y > ȳ. �
Online Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105704.
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Maćkowiak, B., Wiederholt, M., 2018. Lack of preparation for rare events. J. Monet. Econ. 100, 35–47.
Mani, A., Mullainathan, S., Shafir, E., Zhao, J., 2013. Poverty impedes cognitive function. Science 341 (6149), 976–980.
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