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Abstract

How should authorities that care about match quality and diversity allocate resources

when they are uncertain about the market? We introduce adaptive priority mechanisms

(APM) that prioritize agents based on their scores and characteristics. We derive an

APM that is optimal and show that the ubiquitous priority and quota mechanisms

are optimal if and only if the authority is risk-neutral or extremely risk-averse over

diversity, respectively. Deferred Acceptance implements the unique stable matching

when all authorities use the optimal APM. We provide a practical roadmap for im-

plementing APM as a market-design solution and illustrate this using Chicago Public

Schools data.
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1 Introduction

Authorities that allocate resources such as school seats, university courses, refugee visas, and

medical supplies often face conflicting objectives. On the one hand, they want to maximize

match quality or fairness by allocating resources to the highest-scoring agents according to

various criteria such as academic attainment, qualifications (Kornbluth and Kushnir, 2021),

likelihood of gaining employment (Ahani, Andersson, Martinello, Teytelboym, and Trapp,

2021; Delacrétaz, Kominers, and Teytelboym, 2023), mortality risk (Pathak, Sönmez, Unver,

and Yenmez, 2021), or distance (Dur, Kominers, Pathak, and Sönmez, 2018). On the other

hand, they want to achieve diversity across socioeconomic attributes including race, religion,

and gender (Aygün and Turhan, 2017; Dur, Pathak, and Sönmez, 2020; Sönmez and Yenmez,

2022a). Resolving this conflict is complicated, especially in new markets, due to uncertainty

about the distribution of individuals’ scores, characteristics, and preferences (Doğan and

Erdil, 2022).1

To balance these trade-offs, when the use of prices is seen as infeasible or unethical, au-

thorities have broadly used two classes of policies: quotas,2 where a certain portion of the

resource is set aside for given groups; and priorities, where individuals in given groups re-

ceive higher scores. These policies have been applied across many different markets in many

different countries, for example: the Indian government reserves some government jobs for

disadvantaged groups; Chicago Public Schools employs quotas for students from different so-

cioeconomic groups at its competitive exam schools; many countries gave differential priority

to healthcare workers in the receipt of Covid-19 vaccines; and the University of Michigan

and the University of Texas have used different priority scales for minority students.

But what mechanism should such an authority use? Despite the practical importance

of this question, we do not know if an authority should use a priority mechanism, a quota

mechanism, or something else entirely. In this paper, we formulate and solve the optimal

mechanism design problem of an authority that allocates a resource to agents who are hetero-

geneous in their scores and belong to different groups. The authority cares about the scores

and diversity of the agents who are assigned the resource.3 Moreover, they are uncertain

1Emphasizing the importance of uncertainty in the context of U.K. university admissions, Doğan and
Erdil (2022) write: “[V]olatile trends of demand for different courses mean even meeting intake targets can
be a difficult juggling act for universities.”

2We use quota as a general term that includes the widely used reserve policies (see Definition 4).
3This diversity preference can be interpreted more generally as encoding a preference of the authority over

the composition of assigned agents across a range of attributes. Moreover, when scores represent individuals’
property rights over objects, we can interpret the preference for higher scores as a preference for procedural
fairness. Whenever a lower-scoring agent obtains the resource while a higher-scoring agent does not, the
latter agent has justified envy towards the former. In the two-sided matching literature, justified envy is
often seen as inimical to fairness (see e.g., Balinski and Sönmez, 1999).
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about the market, i.e., they have some beliefs over joint distributions of scores and groups

in the population.

Summary of Main Results. We propose a new class of adaptive priority mechanisms

(APM) that adjust agents’ scores as a function of the number of assigned agents with the

same characteristics and that allocate the resource to the set of agents with the highest

adjusted scores. With a single authority, we derive an APM that is optimal, implements a

unique outcome, and can be specified solely in terms of the preferences of the authority (i.e.,

it is optimal regardless of their beliefs). By contrast, we show that priorities and quotas

are optimal if and only if risk aversion over diversity is extremely low or high, respectively.

Moreover, optimally set priority and quota policies depend on both the preferences and beliefs

of the authority. Thus, the optimal APM improves outcomes, is robust to uncertainty, and

requires less information. With many authorities, we show that the combination of the

deferred acceptance algorithm along with each authority using its optimal APM implements

the unique stable allocation. Finally, we provide a practical roadmap for implementing

APM as a market design solution. To demonstrate the practicality and potential benefits

of adopting APM, we follow this roadmap and provide a proof-of-concept implementation

using application and admission data from Chicago Public Schools. We find that the gains

from adopting APM have the potential to be large.

Single-Authority Model. We begin our analysis by studying a setting with a single

authority that has some amount of a homogeneous resource (e.g., seats at a school, medical

resources) that it can allocate to a continuum of agents.4 Agents differ in their scores (e.g.,

exam score, clinical need) and discrete attributes (e.g., socioeconomic status, whether they

are a frontline health worker). The authority cares separably about the distributions of

scores (through some index such as the average score) and characteristics (such as gender

and race) of the agents who are assigned the resource. Thus, the authority’s preferences over

agents depend on the joint distribution of agents’ scores and groups. We assume that this

distribution is potentially unknown and varies arbitrarily across states of the world. The

authority’s problem is to design a first-best optimal mechanism: a mechanism that is optimal

regardless of their beliefs and implements an ex post optimal allocation in all states.

Adaptive Priority Mechanisms. To this end, we introduce the class of adaptive priority

mechanisms (APM), which proceed in two steps. First, each agent is given an adaptive

priority that is a function of their own score and the number of agents from the same group

to whom the resource is assigned. Second, APM allocate the resource to agents in order of

adaptive priorities, subject to fully allocating the available amount. This class of mechanisms

4In Appendix G, we generalize our analysis and results to a setting with discrete agents.

2



allows the implicit preference for agents from different groups to depend upon the ultimate

allocation. The allocation under an APM is defined as the fixed point of the above operation:

an allocation is implemented by APM if the adaptive priority of all agents who are allocated

the resource (evaluated at the allocation) is higher than those who are not allocated the

resource. When an agent’s adaptive priority is increasing in their own score and decreasing

in the number of agents with the same attributes that are assigned the resource – a property

we call monotonicity – the APM implements a unique allocation. Moreover, this allocation

can be computed by prioritizing agents according to their adaptive priority, evaluated at the

number of higher-scoring agents in their group.

Most importantly, we derive a particular, monotone APM that is first-best optimal. Un-

der this optimal APM, an agent’s priority is equal to the contribution of their own score plus

their marginal contribution to diversity utility. Intuitively, this mechanism equates the bene-

fits and costs of allocating to the marginal agent, regardless of the ultimate joint distribution

of agents’ scores and groups. Moreover, this APM can be described and communicated to

stakeholders ex ante as a function of the authority’s preferences, without any reference to

its beliefs or hypothetical states of the world.

(Sub)Optimality of Priorities and Quotas. We next establish that the widely used

priority and quota mechanisms are generally dominated by APM. We do so by fully char-

acterizing the conditions on the preferences of the authority such that priorities and quotas

attain first-best optimality. Concretely, we find that priorities and quotas are first-best op-

timal if and only if (i) the authority is risk-neutral over diversity, in which case priorities are

optimal, or (ii) the authority is extremely risk-averse over diversity, in which case quotas are

optimal. Hence, outside of extreme cases, APM deliver strict improvements relative to the

status quo.

A Price-Theoretic Intuition. To both illustrate and develop the intuition behind these

results, we study a detailed example that allows for a closed-form comparison of priorities,

quotas, and the optimal adaptive priority mechanism. We do this in the spirit of the seminal

analysis of Weitzman (1974), who compares price and quantity regulation in product markets.

In the example, the resource corresponds to seats at a school and there are two groups of

students (minority and majority students). The authority is uncertain over the relative

scores of minority and majority students, and has preferences over the scores of admitted

students and the number of minority students admitted to the school.

The preference of the authority between priority and quota mechanisms is governed by its

risk aversion over the number of admitted minority students: there is a cutoff value such that

quotas are preferred when risk aversion exceeds this threshold and priorities are otherwise
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preferred. On the one hand, by mandating a minimal level of minority admissions, quotas

guarantee a level of diversity. On the other hand, as relatively more minority students receive

the resource in the states in which they have relatively higher scores, priorities positively select

minority students. Adaptive priority mechanisms optimally exploit the guarantee effects of

quotas and the positive selection effects of priorities, and are always optimal. In a price-

theoretic sense, this is analogous to the idea that firms setting either a price or a quantity

is typically suboptimal and it is better to set an entire supply function (for a review of the

literature on supply functions, see Rostek and Yoon, 2023).

Multiple Authorities and Stable Allocations. While the single-authority model is

relevant for studying settings with a single resource, in many markets there are multiple

authorities who control heterogeneous resources (e.g., school seats) over which agents have

heterogeneous preferences. We generalize our analysis to this setting and show that there is

a unique stable allocation. This constitutes a methodological contribution as we establish

the uniqueness of stable allocations in continuum economies in which there are multiple so-

cioeconomic groups and authorities have non-linear preferences over the composition of the

agents that they admit. Importantly, this means that authorities have endogenous prefer-

ences over various agents: how an authority ranks one agent relative to another depends

on the representation of their groups in the ultimate allocation. Moreover, we characterize

this unique stable allocation and show that a mechanism is consistent with stability if and

only if it coincides with the single-authority-optimal APM. Furthermore, if all authorities

use the optimal APM to determine the set of admitted agents, then the widely used Deferred

Acceptance (DA) algorithm implements the unique stable matching.

APM as a Practical Market Design Solution. Based on the fact that APM outper-

form conventional priority and quota mechanisms, the adoption of APM has the scope to

improve resource allocation in many two-sided matching contexts. We conclude the paper

by providing a practical roadmap for implementing APM as a market design solution. The

roadmap proceeds in three steps. First, understand the preferences of stakeholders over al-

locations using a combination of standard stated and revealed preference methodologies. A

key benefit of designing the optimal APM is that it only requires elicitation of preferences

and not beliefs, which the optimal design of priority and quota mechanisms would require.

Second, estimate the optimal APM and communicate this to stakeholders. We show that this

can be achieved via a simple tabular format, in which rows correspond to groups, columns

correspond to the number of people from that group that are allocated the resource, and

the entries correspond to score boosts. Third, implement the optimal APM by running the

Deferred Acceptance algorithm. As we have shown theoretically, this implements a stable
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allocation and makes it dominant for agents to report their preferences truthfully.

We finally perform a proof-of-concept exercise to obtain a sense of the benefit of using

APM and demonstrate the simplicity of its implementation. Concretely, we apply our prac-

tical roadmap and benchmark the improvements from APM using application and admission

data from 2013-2017 on the selective exam schools of Chicago Public Schools (CPS), a set-

ting also empirically studied by Angrist, Pathak, and Zárate (2019) and Ellison and Pathak

(2021). CPS uses a reserve system to increase the admissions of underrepresented groups. In

this system, as we later detail, academic scores and the socioeconomic characteristics of the

census tracts in which students live determine the schools that students can attend. More-

over, there is substantial variation in the joint distribution of student characteristics over

time. This justifies our focus on the importance of uncertainty and implies that APM must

generate gains for the authority. Estimating preference parameters to best rationalize the

pursued reserve policy, we find that the gains from using the optimal APM are equivalent to

eliminating 37.5% of the loss to CPS’ payoffs from failing to admit a diverse class of students.

This gain is 2.3 times larger than the estimated gain from an actual 2012 policy reform that

increased the size of all reserves. This exercise shows both that APM could be practically

implemented and that the gains from so doing may be considerable.

Related Literature. The market design literature has largely studied the comparative

statics and axiomatic foundations of mechanisms. In this context, our paper relates to the

literature on matching with affirmative action concerns initiated by Abdulkadiroğlu and

Sönmez (2003) and Abdulkadiroğlu (2005). For example, in the study of quotas, Kojima

(2012) shows how affirmative action policies that place an upper bound on the enrollment of

non-minority students may hurt all students, Hafalir, Yenmez, and Yildirim (2013) introduce

the alternative and more efficient minority reserve policies, Ehlers, Hafalir, Yenmez, and

Yildirim (2014) generalize reserves to accommodate policies that have floors and ceilings for

minority admissions, and Doğan (2016) shows that stronger affirmative action can (weakly)

harm all minority students under reserve policies. The quota policies studied in this paper

are a special case of the slot-specific priorities introduced in Kominers and Sönmez (2016).5

A number of alternative mechanisms have also been studied. For example, Kamada and

Kojima (2017, 2018) and Goto, Kojima, Kurata, Tamura, and Yokoo (2017) study stability

and efficiency in more general matching-with-constraints models. Relatedly, Echenique and

Yenmez (2015) characterize a class of substitutable choice rules under diversity preferences,

Erdil and Kumano (2019) study tie-breaking rules under substitutable priorities under stable

matching mechanisms and distributional constraints, and Imamura (2020) presents axioms

5Quota policies have been used in many countries, including India (Aygün and Turhan, 2020; Sönmez
and Yenmez, 2022a,b), Germany (Westkamp, 2013) and Brazil (Aygün and Bó, 2021).
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to compare the meritocracy and diversity of different choice rules and characterizes reserves

and quotas.

In this paper, we instead pursue the methodological approach of mechanism design and

welfare economics by analyzing optimal mechanisms from the perspective of an authority

with some given preferences over allocations. Chan and Eyster (2003) share this perspective

in their analysis of the costs and benefits of banning affirmative action.6 In this vein, we have

previously analyzed the narrower problem of how to optimally coarsen agents’ scores into

priorities (Çelebi and Flynn, 2022). This analysis nevertheless restricted authorities to using

a priority mechanism that does not consider agents’ characteristics and implementing only

allocations that are stable with respect to these priorities. Thus, our focus on comparing

priorities, quotas, and optimal mechanisms distinguishes our analysis from our prior work

and the previous literature, which study the properties of each policy in isolation and without

an explicit treatment of uncertainty. By doing so, we arrive at a new and practical market

design solution for two-sided matching markets that dominates the existing alternatives,

including priority and quota mechanisms.7

Finally, by showing that deferred acceptance with adaptive priority mechanisms imple-

ments the unique stable allocation in the presence of endogenous preferences, we extend

results from Azevedo and Leshno (2016) and Abdulkadiroğlu, Che, and Yasuda (2015) that

show that deferred acceptance implements the unique stable allocation with fixed prefer-

ences. As a byproduct, our paper contributes to a literature that studies the uniqueness

of stable allocations in large markets when authorities have endogenous preferences over

agents, complementing Che, Kim, and Kojima (2019), who show that, when authorities’

choice functions are generated by submodular quotas, there is a unique stable allocation

when the distribution of agents has full support. Our uniqueness result concerns another

important class of economies in which authorities have separable and smooth preferences

over scores and diversity of a form that is commonly assumed in applied theoretical work

(see e.g., Chan and Eyster, 2003; Ellison and Pathak, 2021; Dessein, Frankel, and Kartik,

2023; Passaro, Kojima, and Pakzad-Hurson, 2023).

Outline. Section 2 exemplifies our main results. Section 3 studies optimal mechanisms

with a single authority. Section 4 extends the model to include many authorities. Section

5 presents a general roadmap for implementing APM in practice and, as a proof-of-concept,

applies this to Chicago Public Schools. Section 6 concludes. The proofs are in Appendix A.

6Other analyses of this issue include Epple, Romano, and Sieg (2008) and Temnyalov (2023).
7In a similar spirit, Combe, Dur, Tercieux, Terrier, and Ünver (2022) propose new mechanisms to over-

come problems associated with unequal distribution of experienced teachers in schools and quantify the
improvements compared to benchmarks.
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2 Comparing Mechanisms: An Example

The Setting. A single school has capacity q < 1. Students are of unit total measure,

have scores in [0, 1], and are either minority or majority students. The authority has linear-

quadratic preferences ξ : R2 → R over students’ total scores s̄ and the measure of admitted

minority students x:

ξ(s̄, x) = s̄+ γ

(
x− β

2
x2

)
(1)

where γ ≥ 0 indexes their general preference for admitting minority students and β ≥ 0

indexes the degree of risk aversion regarding the measure of admitted minority students.

The minority students are of measure κ and have scores that are uniform over [0, 1]. The

majority students are of measure 1− κ and all have common underlying score ω ∈ [ω, ω] ⊆
[0, 1] with distribution Λ. The score of the majority students, ω, parameterizes how well

they score relative to the minority students. Finally, we assume that the affirmative action

preference is neither too small nor too large with the following: min{κ, q} > 1+γ−ω
1
κ

+γβ
+κ(ω−ω),

κ(1 − ω) < 1+γ−ω
1
κ

+γβ
. These conditions ensure that optimal affirmative action policies will

neither be so large as to award all slots to minority students in some states nor so small that

there is no affirmative action in some states.

The authority can implement an APM, a priority mechanism, or a quota mechanism. An

APM increases the scores of minority students by A(y) when y other minority students are

admitted, does not change the scores of majority students, and allocates seats to the stu-

dents with highest transformed scores.8 An (additive) priority mechanism α ∈ R+ increases

uniformly the scores of minority students by α. The authority then admits the highest-

scoring measure q students. A quota policy Q ∈ [0,min{κ, q}] sets aside measure Q of the

capacity for the minority students. The highest-scoring minority students of measure Q are

first allocated to quota slots, and all other agents are then admitted to the residual q − Q
places according to the underlying score.9

We illustrate how these three policies prioritize minority students in Figure 1. By defini-

tion, priority mechanisms award a constant score boost of α. Quota mechanisms give enough

points to always ensure admission until measure Q is reached and then give no advantage.

APM allow any pattern of prioritization as a function of minority admissions (we plot only

the optimal APM, which turns out to be linear in this context).

8Formally, this mechanism allocates seats to x(ω) minority students and q − x(ω) majority students,
where s(x(ω)) + A(x(ω)) = ω, and s(x(ω)) denotes the score of the marginal minority student when the
highest-scoring x(ω) minority students are admitted.

9This corresponds to a precedence order that processes quota slots first. We discuss the importance of
precedence orders in Section 2.1 and in Appendix B.3.
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Figure 1: How Priorities, Quotas, and APM Prioritize Minority Students
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Note: Illustration of the equivalent priority given to a minority student as a function of the measure
of admitted minority students under: the optimal APM (see Proposition 1), a priority mechanism
α, and a quota mechanism Q.

Comparing Mechanisms. Let the authority’s expected utility be V ∗ under any optimal

(expected utility maximizing) mechanism, VA under an optimal adaptive priority mechanism,

VP under an optimal priority mechanism, and VQ under an optimal quota mechanism. The

following proposition characterizes the relationships between these mechanisms:

Proposition 1. The following statements are true:

1. The APM A(y) = γ(1− βy) is optimal, V ∗ = VA

2. The comparative advantage of priorities over quotas is given by:

∆ ≡ VP − VQ =
κ

2
(1− κγβ) Var[ω] (2)

3. The comparative advantage of APM over priorities and quotas is given by:

∆∗ ≡ min{V ∗ − VP , V ∗ − VQ} =

1
2

(κγβ)2 κVar[ω]
1+κγβ

, κγβ ≤ 1,

1
2
κVar[ω]
1+κγβ

, κγβ > 1.
(3)

We now develop intuition for the comparative advantage of priorities over quotas. First,

observe that a quota of Q admits measure Q minority students in all states of the world

under our assumptions. However, a priority policy induces variability in the measure of

admitted minority students across states of the world. We call the gain to quota policies in

eliminating this variation the guarantee effect and find mathematically that it is equal to
κ
2

(1 + κγβ) Var[ω] in payoff terms.

Second, the optimal priority policy admits more minority students when minority stu-

dents score relatively well and fewer when minority students score relatively poorly. To
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Figure 2: Comparative Statics for the Positive Selection and Guarantee Effects
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Note: Illustration of the comparative statics for the trade-offs between priority and quota mech-
anisms. Positive Selection plots the positive selection effect, κVar[ω], and Guarantee plots the
guarantee effect, κ

2 (1 + κγβ) Var[ω]. As per Equation 2 in Proposition 1, priorities dominate quo-
tas if and only if 1 ≥ κγβ, where the point of indifference is denoted by the dashed grey line.

demonstrate this, we show that minority admissions in state ω under the optimal priority

policy are x(α, ω) = x̄(α) + ε(ω) where x̄(α) = κ(1 + α − E[ω]) and ε(ω) = κ (E[ω]− ω).

Thus, in the states where minority students score relatively better (ω < E[ω]), we have that

ε(ω) > 0 and x(α, ω) > x̄(α). We call this effect the positive selection effect and find that

this benefits a priority policy by −Cov[ω, ε(ω)] = κVar[ω] in payoff terms.

The ultimate preference between priority and quota mechanisms is determined by which

of the guarantee and positive selection effects dominates. This is itself determined by the

extent to which the authority values diversity γ, the risk preferences of the authority β,

and the measure of minority students κ. We illustrate how risk aversion and the measure

of minority students affect the sizes of the positive selection and guarantee effects in Figure

2. If the authority is close enough to risk-neutral (i.e., 1
κγ
> β), then priorities are strictly

preferred as positive selection dominates guarantees. If the authority is sufficiently risk-averse

(i.e., 1
κγ
< β), then quotas are strictly preferred as the guarantee effects dominate positive

selection. The threshold for risk aversion scales inversely with the measure of minority

students κ. Because minority students’ scores are uniform, κ corresponds to the density of

minority students’ scores. Hence, the change in minority admissions from a small change

in their priority equals κ. Thus, κ indexes the sensitivity of minority admissions to the

state under priority policies. As a result, higher κ favors quota policies by increasing the

magnitude of the guarantee effect relative to the positive selection effect. Finally, the extent

of uncertainty Var[ω] may intensify an underlying preference but never determines which

regime is preferred.
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Figure 3: Comparative Statics for the Losses from Priorities and Quotas
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Note: Illustration of the comparative statics for the losses from optimal priority and quota policies
relative to the optimal APM (as presented in Equation 3 in Proposition 1). The lower envelope of
the losses, ∆∗, corresponds to the comparative advantage of the optimal APM over priorities and
quotas. The point of indifference between priorities and quotas is denoted by the dashed grey line.

An APM is optimal and overcomes the limitations posed by both priorities and quotas.

In this case, the optimal APM is linear in the measure of admitted minority students, with

slope given by the authority’s risk aversion over minority admissions, awarding each minority

student a subsidy equivalent to their marginal contribution to the diversity preferences of

the authority. This allows the adaptive priorities to optimally balance the positive selection

and guarantee effects, and implement the first-best allocation in every state. In Figure 3,

we illustrate how the losses from priority mechanisms and quota mechanisms vary with risk

aversion and sensitivity. As risk aversion moves, the loss from priority and quota policies

relative to the optimum is greatest when the authority is indifferent between the two regimes.

The loss from restricting to priority or quota policies is zero when the authority is risk-neutral

or there is no uncertainty regarding relative scores, and decreases as the authority becomes

extremely risk-averse. As sensitivity increases, the scope for affirmative action increases and

so the gains from APM also increase. Thus, we should expect there to be large gains from

switching to APM precisely when authorities have intermediate levels of risk aversion and/or

the scope for implementing affirmative action is significant.

Finally, optimal APM have a further advantage that we have not yet highlighted: they

depend only on the authority’s preferences, γ and β, and not their beliefs, Λ. This contrasts

with the optimal priority and quota policies, which depend on Λ.10 As a result, APM improve

outcomes while using less information and are robust to changes in beliefs.

10The optimal quota policy is given by Q∗ = 1+γ−E[ω]
1
κ+γβ

, while the optimal priority policy sets the expected

measure of minorities to Q∗. In this simple setting, the policies depend on Λ through E[ω].

10



2.1 Discussion

Before moving to the general analysis, we discuss three additional findings that emphasize

the broader economics and scope of these results.

A Price-Theoretic Intuition. This comparison of priorities vs. quotas echoes the com-

parison of prices vs. quantitities by Weitzman (1974). We show in Appendix B.1 that there

is a formal mapping between the two. Intuitively, the positive selection effect is equivalent to

the effect that price regulation gives rise to the greatest production in states where the firm’s

marginal cost is lowest. Moreover, the guarantee effect is equivalent to the ability of quan-

tity regulation to stabilize the level of production. An APM corresponds in the Weitzman

(1974) setting to a regulator setting neither a price nor a quantity, but completely specifying

the optimal demand curve (as in the literature on demand functions reviewed by Rostek

and Yoon, 2023). Thus, the comparison of mechanisms for allocating goods without prices

boils down to similar trade-offs between well-understood price-based mechanisms for goods

allocation.

Medical Resource Allocation. In Appendix B.2, we apply this model to understand the

trade-offs between priority and quotas in the context of medical resource allocation. This

topic received enormous attention during the Covid-19 pandemic (see e.g., Pathak, Sönmez,

Unver, and Yenmez, 2021). Our analysis provides a formal justification for the idea that

priorities may lose out relative to quotas from ignoring some groups or ethical values in the

allocation of scarce resources (the guarantee effect). However, we also uncover a benefit of

priorities that was not previously understood: they induce positive selection. Thus, if we

care mostly about treating the neediest (β is low), priorities may yet be optimal.

Optimal Precedence Orders. We have modelled quotas by first allocating minority stu-

dents to quota slots and then allocating all remaining students according to the underlying

score. However, we could have done the opposite. The orders in which quotas are pro-

cessed are called precedence orders and their importance has been the subject of a growing

literature (see e.g., Dur, Kominers, Pathak, and Sönmez, 2018; Dur, Pathak, and Sönmez,

2020; Pathak, Rees-Jones, and Sönmez, 2022). In Corollary 1 in Appendix B.3, we show

that processing quotas second is equivalent to using a priority policy in this setting. Thus,

processing quotas first is better than processing them second if and only if 1 ≤ κγβ. The

main aspect of this conclusion is robust in the general theory: in Theorem 2, we show that

for any quota policy to be optimal in the presence of uncertainty, it must process quotas

first.
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3 Optimal Mechanisms with a Single Authority

We begin our general analysis by studying the resource allocation problem of a single author-

ity. In this context, we define APM and derive an optimal APM that attains the first-best.

We moreover provide necessary and sufficient conditions for the optimality of the ubiquitous

priority and quota mechanisms and find that they are extremely restrictive, implying that

there are likely gains from switching to APM.

3.1 Model

An authority allocates a single resource of measure q ∈ (0, 1). Agents differ in their type

θ ∈ Θ = [0, 1] ×M comprising their scores s ∈ [0, 1] and the group to which they belong,

m ∈ M, where their score denotes their suitability for the resource and M is a finite set

comprising potential attributes such as race, gender, or socioeconomic status. We denote

the score and group of any type θ by s(θ) and m(θ), respectively. The true distribution of

types is unknown to the authority. The authority’s uncertainty is parameterized by ω ∈ Ω,

where Ω is the set of all distributions over Θ that admit a density. The authority believes

that ω has distribution Λ ∈ ∆(Ω). In state of the world ω, we denote the measure of types

by Fω with density fω.11 In Appendix G, we translate our analysis and results to the discrete

context.12

An allocation µ : Θ → {0, 1} specifies for any type θ ∈ Θ whether they are assigned to

the resource.13 Two allocations µ and µ′ are essentially the same if they coincide up to a

measure zero set. The set of possible allocations is U . An allocation is feasible if it allocates

no more than measure q of the resource. A mechanism is a function φ : Ω→ U that returns

a feasible allocation for any possible measure of types.

As motivated, authorities often have preferences over scores and diversity. To model this,

we define the aggregate score index of any allocation as:

s̄h(µ, ω) =

∫
Θ

µ(s,m)h(s)dFω(s,m) (4)

for some continuous, strictly increasing function h : [0, 1]→ R+, which determines the extent

to which the authority values agents with higher scores. To capture diversity, we compute

11Formally, we mean that fω(s,m) = ∂
∂sFω(s,m) exists for all s ∈ [0, 1] and m ∈M.

12Concretely, we establish the optimality of APM (Theorem 7), characterize the (sub)-optimality of pri-
orities and quotas (Theorem 8), and show that agent-proposing deferred acceptance, when combined with
the optimal APM, implements the agent-optimal stable allocation (Theorem 9).

13Formally, µ is a measurable function with respect to the Borel σ−algebra of the product topology in Θ.
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the measure of agents of each group allocated the resource x(µ, ω) = {xm(µ, ω)}m∈M as:

xm(µ, ω) =

∫
[0,1]

µ(s,m)fω(s,m)ds (5)

To separate the roles of scores and diversity, we impose that their utility function over

these dimensions ξ : R|M|+1 → R satisfies the following assumption:

Assumption 1. The authority’s utility function can be represented as:

ξ (s̄h, x) ≡ g

(
s̄h +

∑
m∈M

um(xm)

)
(6)

for some continuous, strictly increasing function g : R → R and differentiable and concave

functions um : R→ R for all m ∈M.

We also assume that the authority always prefers to allocate the entire resource.14 The

preference of the authority is a monotone transformation of a quasi-linear utility index com-

prised of scores and a diversity preference. Intuitively, um determines the preference for as-

signed agents of group m, with its concavity following from a preference for diversity.15 The

function g determines their risk preferences as well as the complementarity/substitutability

of scores and diversity (if g is convex (concave) at a point, then scores and diversity are

complements (substitutes) at that point). More fundamentally, Assumption 1 can be jus-

tified by the axiomatization developed by Çelebi (2023): if preferences satisfy appropriate

adaptations of responsiveness (in the sense of Roth, 1985), substitutes (in the sense of Roth,

1984), and acyclicity (which is a strengthening of transitivity, proposed by Tversky, 1964),

then Assumption 1 is satisfied.

This notwithstanding, we explore the robustness of our results to relaxing the separability,

differentiability, and concavity embedded in Assumption 1 in Appendix D. Most importantly,

we show that our results are essentially unchanged when preferences are non-separable over

diversity, i.e., when
∑

m∈M um(xm) is replaced with u(x). Among other things, this allows

our model to capture preferences in situations with overlapping group membership (Aygün

and Bó, 2021; Sönmez and Yenmez, 2022a), e.g, when people have different genders and

belong to different socioeconomic groups.16 The essential assumption for our results is the

14A necessary and sufficient condition for this is: h(0) + u′m(q) ≥ 0 for all m ∈ M. This condition is
sufficient as the lowest utility the authority can get from allocating the resource is always positive. It is
also necessary: if h(0) + u′m(q) < 0 for some m, in the state of the world where there are only measure q of
group m agents with uniform score distribution, the authority would prefer not to allocate a portion of the
resource to the lowest-scoring agents.

15Note that um depends on m, so our specification allows the designer to have different preferences for
allocating the resource to agents from different groups. For example, this allows for a designer with affirmative
action motives who prefers to assign the resource to some particular group m: u′m(x) > u′m′(x) for all x or
a designer who prefers a balanced composition of allocated agents: u′m(x) = u′m′(x) for all m ∈M and x.

16As a simple example, if people can be men m or women w and rich r or poor p (so the groups are
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weak separability of diversity and score preferences.17 When this fails, it is no longer possible

to specify optimal mechanisms without explicitly conditioning the allocation on the realized

distribution of agents. While separability does impose structure, we re-emphasize that the

separability embodied in Assumption 1 does not rule out complementarity or substitutability

between scores and diversity and does not even rule out that scores and diversity can be

substitutes local to some allocations and complements local to other allocations.

We define the value of a mechanism φ under distribution Λ as the authority’s expected

utility of the allocations induced by that mechanism:

Ξ(φ,Λ) =

∫
Ω

ξ(s̄h(φ(ω), ω), x(φ(ω), ω))dΛ(ω) (7)

We say that a mechanism is first-best optimal if it maximizes the authority’s expected utility

for all possible distributions of measures of agents’ characteristics.

Definition 1 (First-Best Optimality). A mechanism φ∗ is first-best optimal if:

Ξ(φ∗,Λ) = sup
φ

Ξ(φ,Λ) (8)

for all Λ ∈ ∆(Ω).

This is a demanding property for a mechanism to possess as it requires a mechanism to

implement an ex post optimal allocation in all states of the world. Moreover, as the example

from Section 2 shows, priority and quota mechanisms can fail to be first-best optimal while

APM can attain first-best optimality. This is despite the fact that the optimal APM can

be described without reference to the state of the world. This allows the optimal APM to

be defined ex ante and communicated to stakeholders (for example, students’ families) in a

simple way, without any reference to the beliefs of the authority or the states of the world. In

the remainder of this section, we formally define APM, show that (when suitably designed)

they are first-best optimal, and characterize the conditions under which priorities and quotas

are first-best optimal.

3.2 Adaptive Priority Mechanisms

Toward deriving a first-best optimal mechanism, we introduce APMs. To this end, we first

introduce an adaptive priority policy A = {Am}m∈M, where Am : R × [0, 1] → R. The

M = {wp,wr,mp,mr}) and the authority cares about increasing the representation of women and poor
people, then the utility function could be given by u(x) = û(xwp + xwr, xmp + xwp) and our analysis would
apply so long as u is concave.

17The assumption of separable preferences over scores and diversity is common in the literature on af-
firmative action concerns (see e.g., Athey, Avery, and Zemsky, 2000; Chan and Eyster, 2003; Ellison and
Pathak, 2021).
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adaptive priority policy assigns priority Am(ym, s) to an agent with score s in group m when

measure ym of agents of the same group is allocated the object. Given an adaptive priority

policy, an APM implements allocations in the following way:

Definition 2 (Adaptive Priority Mechanism). An adaptive priority mechanism, induced by

an adaptive priority A, implements an allocation µ in state ω if the following are satisfied:

1. Allocations are in order of priorities: µ(θ) = 1 if and only if for all θ′ with µ(θ′) = 0,

we have that:

Am(θ)(xm(θ)(µ, ω), s(θ)) > Am(θ′)(xm(θ′)(µ, ω), s(θ′)) (9)

2. The resource is fully allocated: ∑
m∈M

xm(µ, ω) = q (10)

With some abuse of terminology, we will often refer to an APM as the adaptive priority

A that induces it. By way of illustration, we provide a simple example of the flexibility of

APM to act like a hybrid of priority and quota policies.

Example 1. Let M = {m,n} and the capacity be q = 0.5. We consider the adaptive

priority policy A = {Am, An} given by:

Am(x, s) = s, An(x, s) =


s+ 1 if x ≤ 0.1

s+ 0.1 if x ∈ (0.1, 0.25)

s if x ≥ 0.25

(11)

This leaves the score of group m agents unchanged and gives agents of group n a score boost

of: 1 if less than measure 0.1 group n agents is assigned, 0.1 if between measure 0.1 and 0.25

group n agents is assigned, and no score boost at all if measure greater than 0.25 group n

agents is assigned.

To understand the properties of this adaptive priority policy, observe that the highest-

scoring measure 0.1 group n agents is guaranteed the resource, even in states where they

score badly. Therefore, An practically embeds a quota of 0.1. For admissions levels between

0.1 and 0.25, the APM acts like a priority policy and boosts the scores of group n agents by

0.1, increasing the admissions of group n when group n agents score moderately well. For

admissions levels beyond 0.25, group n agents are given no further advantage. Thus, when

diversity is attained, this APM “phases out” and no longer advantages any group. 4

At this point, we have not established that a given APM implements any allocation

at all, or that it implements a unique allocation (i.e., it may not even be a mechanism).
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However, there is a natural subclass of APM that do implement a unique allocation: those

that are monotone. An APM A is monotone when (i) Am(·, s) is a decreasing function for all

m ∈M, s ∈ [0, 1] and (ii) Am(ym, ·) is a strictly increasing function for all m ∈M, ym ∈ R.18

Proposition 2. Any Monotone APM A implements an essentially unique allocation.

Moreover, the unique outcome of a monotone APM can be implemented by a simple

algorithm:19

Algorithm 1 (Algorithm for Implementation of APM). The APM algorithm proceeds in the

following four steps:

1. For each θ, define

x(θ) =

∫ 1

s(θ)

fω(s,m(θ))ds (12)

as the measure of agents who have higher scores than θ and belong to the same group.

2. Construct a ranking of the agents as

R(θ) = Am(θ)(x(θ), s(θ)) (13)

3. Define the cutoff ranking for the agents as Rω by∫
Θ

I{R(θ) ≥ Rω}dFω(θ) = q (14)

4. Allocate the resource to all θ with R(θ) ≥ Rω.

Intuitively, this algorithm works by ranking all agents by their score within each group m

and assigning agents in order of their transformed scores evaluated at the measure of already

assigned agents of the same group, conditional on their admission. Informally, the algorithm

moves down the ranking of agents until the resource is exhausted.

3.3 Adaptive Priority Mechanisms Achieve the First-Best

Having shown that monotone APM implement a unique allocation and provided an algorithm

to compute this allocation, we now show that a certain, monotone APM is first-best optimal:

18Observe that monotone adaptive priority mechanisms are fair in the sense that they preserve the ranking
of agents within any group and assign higher priority to an agent whenever there are fewer agents from her
group who are allocated the resource.

19Formally, when we consider an Adaptive Priority Mechanism, we are studying any selection from the set
of allocations that the APM implements. As monotone APMs implement an essentially unique allocation,
this is without loss of optimality. When we refer to the “unique” allocation, we refer to the cutoff allocation
defined in the proof of Proposition 2 and which is implemented by Algorithm 1.
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Theorem 1. The following APM is monotone and first-best-optimal:

A∗m(ym, s) ≡ h−1(h(s) + u′m(ym)) (15)

Moreover, if a mechanism is first-best-optimal, then it implements essentially the same allo-

cations as A∗.

To gain intuition for the form of this mechanism, suppose that the authority has linear

utility over scores h(s) ≡ s. In this case, A∗m(ym, s) = s+ u′m(ym), so an agent in group m is

awarded a boost of u′m(ym) when there are ym higher-scoring agents of the same group, their

direct marginal contribution to the diversity preferences of the authority. This is optimal

because this boost precisely trades off the marginal benefit of additional diversity with the

marginal costs of reduced scores. Moreover, failing to award this precise level of boost would

result in a suboptimal allocation. Thus, any optimal mechanism must be essentially identical

to the optimal APM we have characterized. To generalize this beyond linear utility of scores,

consider the following observation: we can map agents’ scores from s to h(s), and consider

the optimal boost in this space. As h is monotone, this preserves the ordinal structure of

the optimal allocation, and the authority has linear preferences over h(s). Thus, in this

transformed space, the optimal boost remains additive and given by u′m(ym). To find the

optimal transformed score in the original space, we simply invert the transformation h and

apply it to the optimal score in the transformed space, yielding the formula for the optimal

mechanism in Theorem 1.

This result is fundamentally simple and echoes standard consumer preference theory:

just as it is best to equate the marginal rates of substitution between different goods for a

consumer, an authority should set allocations to equate the marginal rates of substitution

between merit and diversity across all groups. Theorem 1 shows that this can be achieved

through a simple generalization of priority mechanisms that allows the priority boost to

depend on the representation of each group.

Moreover, Theorem 1 has important practical implications and, for these practical appli-

cations, its simplicity is its strength. Critically, we now show that this mechanism outper-

forms the alternatives that are used in practically all real-world allocation settings that don’t

use prices: priority and quota mechanisms. Moreover, this mechanism can outperform while

using less information. To design this mechanism, a designer need only know the preferences

of the authority and does not need any information about the designer’s beliefs about what

states of the world are likely and even what these states of the world are. This contrasts

with optimally set priority and quota mechanisms, which require detailed information on

the authority’s beliefs, i.e., one must elicit the authority’s subjective distribution over joint

distributions of groups’ scores and measures.
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In addition to its practical relevance, Theorem 1 is important as an intermediate step

in our more involved theoretical results that characterize stable allocations with multiple

authorities in Section 4. In Section 5, we will provide a practical roadmap for implementing

this mechanism as a market design solution and demonstrate that it can be designed and

communicated to stakeholders straightforwardly.

3.4 (Sub)Optimality of Priorities and Quotas

We have shown that APM are optimal. However, the primary classes of mechanisms that

have been used in practice are priority and quota mechanisms. Therefore, it is important

to understand whether (and when) these mechanisms are also optimal. We now establish

that APM generally provide a strict improvement over priority and quota mechanisms and

characterize when priority and quota mechanisms attain optimality.

We first formally define priority and quota mechanisms. A priority policy P : Θ→ [0, 1]

awards an agent of type (s,m) ∈ Θ a priority P (s,m), that depends on both their score and

group.

Definition 3 (Priority Mechanisms). A priority mechanism, induced by a priority policy

P , allocates the resource in order of priorities until measure q has been allocated, with ties

broken uniformly and at random.

We define a quota policy as (Q,D), where Q = {Qm}m∈M and D : M ∪ {R} →
{1, 2, . . . , |M| + 1} is a bijection. The vector Q reserves measure of the capacity Qm for

agents in group m, with residual capacity QR = q −
∑

m∈MQm open to agents of all types.

The bijection D (the precedence order) gives the order in which the groups are processed.

Definition 4 (Quota Mechanisms). A quota mechanism, induced by a quota policy (Q,D),

proceeds by allocating the measure QD−1(k) agents from group D−1(k) (if there are sufficient

agents from this group) to the resource in ascending order of k, and in descending order of

score within each k. If there are insufficiently many agents of any group to fill the quota, the

residual capacity is allocated to a final round in which all agents are eligible.

We now characterize when priority and quota mechanisms are (sub)optimal. To do this,

we first provide some definitions. Authority preferences are non-trivial if for all m,n ∈ M,

we have that:

h(1) + u′n(0) > h(0) + u′m(q) (16)

Intuitively, the authority’s preferences are non-trivial when their concerns for representation
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of certain groups do not always outweigh the consideration of scores.20 The authority is

risk-neutral over diversity if for all m ∈ M, u′m : [0, q] → R is constant, i.e., there are

constant marginal returns to admitting more agents from all groups. If there are decreasing

marginal returns, then the authority’s preferences feature risk aversion. We define extremely

risk-averse preferences as follows. Let ũ and h̃ be functions describing diversity and score

preferences, and let {xtar
m }m∈M be a vector of target allocation levels. Moreover, assume that

these satisfy: (i) ũ′m(xm) = 0 for all xm > xtar
m (ii) ũ′m(xm) ≥ h̃(1) − h̃(0) for xm ≤ xtar

m and

(iii)
∑

m∈M xtar
m ≤ q. Intuitively, an authority whose preferences are represented by ũ and

h̃ is very risk-averse as the condition that ũ′m(xm) ≥ h̃(1) − h̃(0) implies that the loss from

being below the target level for a group xtar
m dominates any benefit from increased scores.

Thus, they are infinitely risk-averse to failing to meet this target. We say that the authority

is extremely risk-averse if the authority’s preferences over the optimal allocations can be

represented by (ũ, h̃).21

Theorem 2. Suppose that the authority has non-trivial preferences. The following state-

ments are true:

1. There exists a first-best optimal priority mechanism if and only if the authority is

risk-neutral. Moreover, this mechanism is given by P (s,m) = h−1(h(s) + u′m).

2. There exists a first-best optimal quota mechanism if and only if the authority is ex-

tremely risk-averse. Moreover, this mechanism is given by Qm = xtarm and D(R) =

|M|+ 1.

Theorem 2 provides precise conditions on preferences such that the inability of priorities

and quotas to adapt to the state is not problematic. That risk-neutrality and high risk

aversion are sufficient for the optimality of priority and quota mechanisms is intuitive. On

the one hand, if the authority is risk-neutral over the measure of agents from different groups,

then they can perfectly balance their score and diversity goals without regard for the state of

the world. This is because, under risk-neutrality, there is a constant “exchange rate” between

the two: how the authority compares any two agents does not depend on the final allocation

and thus can be specified ex ante by a priority policy. On the other hand, if the authority

is extremely risk-averse as to the prospect of failing to assign xtar
m agents from group m,

then a quota allows them to always achieve this target level of allocation in all states of the

world while minimally sacrificing scores. It is less obvious that risk-neutrality and high risk

20Note that failure of non-triviality means there exists m and n such that h(1) + u′n(0) ≤ +h(0) + u′m(q),
i.e., a group n agent with the maximum score is less preferred than a group m agent with the minimum
score even when all of the entire capacity is allocated to group m agents.

21More formally, this means that there exists (ũ, h̃) such that the optimal allocation under (u, h) is also
optimal under (ũ, h̃) for all ω ∈ Ω.
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aversion are necessary. We prove this result by constructing certain adversarial measures

of agents that render any priority or quota mechanism suboptimal unless the authority is

risk-neutral or extremely risk-averse, respectively. Importantly, this result also shows that

the only optimal quota mechanisms are those that process open slots last.

This result highlights the fragility of priority mechanisms to uncertainty absent the strong

assumption of risk-neutrality over diversity. Intuitively, this is because they feature no guar-

antees as to how many agents of different groups will be assigned. Indeed, the unfortunate

interaction between priority mechanisms and unforeseen market realizations has led to public

backlash against priority mechanisms. For example, in the Vietnamese university admissions

system, which combines exam scores with priority boosts for students from disadvantaged

groups, a year of unexpectedly easy exams led to “top-scoring students missing out on the

opportunity to attend their university of choice” and generated backlash against the system

(Tuoi Tre News, 2017).

Moreover, our result highlights that quota mechanisms similarly fail to achieve the first-

best away from high levels of risk aversion as they do not take advantage of the potential for

positive selection. Our quantitative analysis in Section 5 in the context of quota mechanisms

in Chicago Public Schools suggests that the variation in the distribution of characteristics

across years generates meaningful welfare gains from switching to APM.

To formalize the connection between uncertainty and the importance of the adaptability

of APM, we consider a setting with no uncertainty, where Λ is a Dirac measure. In this

context, we say that a mechanism is optimal without uncertainty if it is a utility maximizer.

Proposition 3. If there is no uncertainty, then there exist optimal priority and quota mech-

anisms.

This result shows that if an authority is certain about the market, then appropriately

constructed priority and quota mechanisms would be optimal. This formalizes the idea that

the suboptimality of priority and quota mechanisms stems from their inability to adapt to

the state. Of course, in practice, an authority is always somewhat uncertain of the market

they face. We will later show empirically that this is the case for CPS as we find substantial

variation in the joint distribution of student scores and groups across years. Thus, absent

the strong conditions on authority preferences that we have characterized in Theorem 2,

APM dominate priority and quota mechanisms. In Section 5, over and above its superior

theoretical performance, we describe several practical benefits of APM and estimate its

potential benefits using Chicago Public Schools data.

20



4 Stable Mechanisms with Multiple Authorities

The single-authority model is relevant for many resource allocation contexts, such as the

medical resource allocation problem of a hospital and the allocation of (homogeneous) gov-

ernment jobs to candidates. However, in other settings such as school or university admis-

sions, multiple authorities must decide upon their admissions policies and rules. In this

section, we generalize our single authority model to a setting with multiple authorities. We

define stability in this setting and show that there is a unique stable allocation. Moreover,

we show that a mechanism is consistent with stability if and only if it coincides with the

single-authority-optimal APM from Theorem 1. Finally, we show that when authorities use

the optimal APM, the widely used deferred acceptance algorithm implements the unique

stable matching, which makes the use of APM practical in a multiple-authority setting.

4.1 The Multi-Authority Model

There are authorities c ∈ C = c0 ∪ C̄ = {c0, c1, . . . , c|C|−1} with capacities qc, where c0 is

a dummy authority that corresponds to an agent going unmatched. The agents differ in

their authority-specific scores, the group to which they belong, and their preferences over

the authorities, �. We index agents by their type θ = (s,m,�) ∈ [0, 1]|C| ×M×R = Θ,

where R is set of all complete, transitive, and strict preference relations over C. For each

type θ, sc(θ) denotes the score of θ at authority c and m(θ) denotes the group of θ. From

now, to economize on notation, we suppress indexing states by ω ∈ Ω and let the measure

of types be F , with density f .22 We assume that f has full support over Θ (i.e., f > 0) and

that F (Θ) is less than the capacity of c0 and greater than the capacity of C̄.
Each authority has preferences over the agents they are assigned of the form introduced

in the previous section:

ξc(s̄hc , xc) = gc

(
s̄hc +

∑
m∈M

um,c(xm,c)

)
(17)

where the extent to which they care about risk gc, scores hc, and diversity {um,c}m∈M are

potentially specific to each authority.

A matching is a function µ : C ∪ Θ → 2Θ ∪ C where µ(θ) ∈ C is the authority that any

type θ is assigned and µ(c) ⊆ Θ is the set of agents that is assigned to authority c.23 Given

22Formally, this density is given by f(s,m,�) = ∂
∂sF (s,m,�).

23The mathematical definition of a matching for the continuum economy we study follows Azevedo and
Leshno (2016) and requires that µ satisfies the following four properties: (i) for all θ ∈ Θ, µ(θ) ∈ C; (ii) for
all c ∈ C, µ(c) ⊆ Θ is measurable and F (µ(c)) ≤ qc; (iii) c = µ(θ) iff θ ∈ µ(c); (iv) (open on the right) for
any c ∈ C, the set {θ ∈ Θ : c �θ µ(θ)} is open.
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a matching µ, s̄hc,c(µ) and xc(µ) = {xm,c(µ)}m∈M denote the score indices and measures of

agents from different groups matched to c at µ. We say that c prefers µ to µ′, which we denote

by µ �c µ′, if ξc(s̄hc,c(µ), xc(µ)) > ξc(s̄hc,c(µ
′), xc(µ

′)). Toward representing a matching as a

lower-dimensional object, we moreover define a cutoff matching as one in which agents are

assigned to the authority that they most prefer among the set of authorities in which their

score clears a group-specific threshold:

Definition 5. A matching µ is a cutoff matching if there exist cutoffs S = {Sm,c}m∈M,c∈C

such that µ(θ) = c if (i) sc(θ) ≥ Sm(θ),c and (ii) for all c′ with c′ �θ c, sc′(θ) < Sm(θ),c′.

Given S, the demand of an agent θ is their favorite authority among those for which they

clear the cutoff:

Dθ(S) = {c : sc(θ) ≥ Sm(θ),c and c �θ c′ for all c′ with sc′(θ) ≥ Sm(θ),c′)} (18)

The aggregate demand for authority c is the set of agents who demand it Dc(S) = {θ :

Dθ(S) = c}, while D̃c(S−c) = Dc((0, . . . , 0), S−c) returns the set of all agents who would

demand c if offered admission when other authorities’ cutoffs are S−c.

4.2 Characterization of Stable Allocations

We first characterize the set of stable allocations. Our context presents two challenges in

this regard. First, the priorities that are typically used to define stability are not primitives

of our model. Therefore, to define stability, we will use the preferences of the authorities

induced by Equation 17. Second, unlike discrete models, a single agent does not affect the

preferences of an authority. Therefore, we need to consider a positive mass of agents to

define blocking.

For each matching µ, authority c 6= c0, and two sets of agents Θ̃ and Θ̂, we let µ̂(Θ̂,Θ̃,c,µ)

denote the matching that maps Θ̂ to c and Θ̃ to c0 and otherwise coincides with µ.24 A set of

agents Θ̂ blocks matching µ at authority c by Θ̃ if (i) for all θ ∈ Θ̂, c �θ µ(θ), (ii) Θ̃ ⊆ µ(c),

(iii) F (Θ̃) = F (Θ̂), and (iv) µ̂(Θ̂,Θ̃,c,µ) �c µ. A matching µ is not blocked if there does not

exist such a (Θ̂, Θ̃, c). A matching µ satisfies within-group fairness if for all θ, θ′ ∈ Θ such

that m(θ′) = m(θ) and sµ(θ)(θ
′) > sµ(θ)(θ), it holds that µ(θ′) �θ′ µ(θ).25 A matching µ is

24Formally,

µ̂(Θ̂,Θ̃,c,µ)(θ) =


c0 if θ ∈ Θ̃

c if θ ∈ Θ̂

µ(θ) otherwise

(19)

25Within-group fairness requires an authority to not reject an agent if it is admitting an agent from the
same group with a lower score. Under our assumption that authorities prefer higher scores (hc is strictly
increasing), within-group fairness is satisfied if there is no blocking in discrete models.
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stable if it satisfies within-group fairness, is not blocked, and all non-dummy authorities fill

their capacity. The following result establishes that there exists a unique stable matching

and that this is a cutoff matching.

Theorem 3. There is a unique stable matching. This matching is a cutoff matching.

This result complements existing results on the uniqueness of stable allocations in con-

tinuum economies under full support (Azevedo and Leshno (2016) for responsive preferences

and Che, Kim, and Kojima (2019) for submodular quotas). Theorem 3 extends the scope

of known economies in which there is a unique stable allocation by considering economies

in which agents belong to different socioeconomic groups and the preferences of authorities

depend non-linearly on their admissions of various groups. Importantly, our setting results

in the authorities having preferences over various sets of agents that are endogenous to the

composition of the admitted agents.

We now formally describe these complications and how we resolve them by using our

characterization of the single authority optimal APM from Theorem 1. First, imagine that

there is only one group of agents |M| = 1, so that authorities’ preferences are determined

by the scores of the agents, as in Azevedo and Leshno (2016). Given a set of cutoffs S−c,

a cutoff tc clears the market for c if F (Dc(tc, S−c)) = qc. When |M| = 1, for a given S−c,

there is a unique tc that clears the market since a smaller cutoff will exceed the capacity

while a larger one will leave a positive measure of the capacity empty. Define T = {Tc}c∈C,
where Tc(S) is the function that maps each S to the market-clearing cutoff tc under S−c.

The result then follows from (i) showing the fixed points of T correspond to market-clearing

cutoffs of stable matchings, (ii) establishing that T is monotone, (iii) applying Tarski’s fixed

point theorem to show that the set of market-clearing cutoffs is a lattice, and (iv) showing

that there can only be one market-clearing cutoff as, if there were two, one would strictly

exceed the capacities of at least one authority.

Suppose now that there are multiple groups, |M| > 1. A significant complication arises:

there is a potential continuum of cutoffs that would clear the market for authority c. A

selection from this set is provided by the cutoffs induced by the optimal APM characterized

by Theorem 1, A∗m,c(ym, s) ≡ h−1
c (hc(s) + u′m,c(ym)). We show that the APM cutoffs are

unique among the market-clearing cutoffs in being compatible with stability. This is because,

for any other t′c, there is a set Θ̂ of agents (with positive measure) who have scores lower

than the cutoff for their group and a set Θ̃ of agents (with positive measure) who have scores

higher than the cutoff for their group, but the authority is strictly better off by admitting Θ̂

and rejecting Θ̃. We define Tc(S) as the market-clearing cutoffs induced by the optimal APM,

show that the fixed points of Tc correspond to market-clearing cutoffs of stable matchings,

and then use this to establish the existence and uniqueness of the stable allocation.
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This hints at a connection between the stable allocation and the allocation induced

by all authorities pursuing the optimal APM, which we now make explicit. The demand

set of c at µ, Dc(µ), is the set of agents who prefer c to their allocation under µ. A

mechanism is consistent with stability if for all F with stable matching µF , it chooses µF (c)

from Dc(µF ). In other words, evaluated at the set of agents who demand an authority, this

mechanism chooses the set of agents with which the authority is already matched. Moreover,

we say that a mechanism φ is equivalent to φ′ if it chooses the same agents under all full

support measures. We now establish that single-authority-optimal APM, as characterized

by Theorem 1, comprise the full set of mechanisms that are consistent with stability (up to

equivalent mechanisms).

Proposition 4. A mechanism φ is consistent with stability if and only if it is equivalent to

A∗c.

Thus, not only is the optimal APM A∗ inherent to the structure of stable allocations, but

it also characterizes stability in this setting in the sense that any deviation from A∗ would

result in a violation of stability.

4.3 APM and DA Implement the Unique Stable Matching

We have now shown there is a unique stable matching and that any mechanism that is consis-

tent with stability is equivalent to the optimal APM. These results suggest that authorities

using their optimal APM can implement the unique stable matching. We now show that

this is indeed the case: the standard deferred acceptance (DA) algorithm implements the

unique stable matching when the authorities’ choice rules follow the optimal APM.

First, we define the Deferred Acceptance (DA) algorithm, following Abdulkadiroğlu, Che,

and Yasuda (2015), which we describe below under our notational conventions for complete-

ness. Each authority c ∈ C submits a choice function Chc : 2Θ → 2Θ such that Chc(Θ
′) ⊆ Θ′

and F (Chc(Θ
′)) ≤ qc. To define the DA mapping DA, first, consider a mapping Q : Θ→ R,

where Q(θ) is an ordered list of authorities. The DA mapping Q′ = DA(Q) is determined

as follows. Informally, every agent θ applies to her most preferred authority in Q(θ). Every

authority c tentatively accepts its applicants according to Chc. If all seats of c are assigned,

it rejects the remaining agents. If an agent θ is rejected by c, Q′(θ) is obtained from Q(θ)

by deleting c in Q(θ). If an agent θ is not rejected, then Q′(θ) = Q(θ).

More formally, let Tc(Q) = {θ ∈ Θ : c is ranked first in Q(θ)} be the set of agents that

rank c as first choice. Each authority admits agents in Chc(Tc(Q)) and rejects agents in

Tc(Q) \Chc(Tc(Q)). If θ ∈ Tc(Q) \Chc(Tc(Q)) for some c, then Q′(θ) is obtained from Q(θ)

by deleting c from the top of Q(θ); otherwise Q′(θ) = Q(θ). Repeated application of the DA
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mapping gives us the DA algorithm. That is, given the set of authorities C, the distribution

of agents F and capacities q, let Q0(θ) =�θ for all θ and Qt = DA(Qt−1) for t ∈ N. By

generalizing Theorem 0 of Abdulkadiroğlu, Che, and Yasuda (2015), we obtain that this DA

algorithm converges for every agent:

Lemma 1. DAt(Q0) converges pointwise.

We let Q∗ : Θ → R denote the limit of DAt(Q0) as t → ∞. Given Q∗(θ), we define

µDA(θ) as the �θ-maximal element of Q∗(θ). We say that µDA is the matching that is

implemented by DA. We now show that if Chc is generated by the optimal APM A∗c for all

c, then µDA is the unique stable matching of this economy.

Theorem 4. If all authorities use the optimal APM, then DA implements the unique stable

matching.

This result demonstrates that deferred acceptance, a widely used and standard matching

algorithm, can readily be combined with APM to compute and implement the unique stable

matching in practice in a multi-authority setting.26 Moreover, as is well known (see Theorem

5.16 in Roth and Sotomayor, 1990), this establishes that the combination of DA with APM

is strategy-proof for agents: truthfully reporting preferences is a dominant strategy.27

4.4 Extensions: Efficient Mechanisms and Dominance Under De-

centralized Sequential Admissions

Decentralized Admissions. In our main analysis of multiple authorities, we have con-

sidered a centralized allocation mechanism (deferred acceptance) and shown that this imple-

ments the unique stable matching. It is also interesting to consider what might happen as

an equilibrium outcome between authorities in a decentralized setting. In Appendix E, we

study such a decentralized setting in which the agents apply sequentially to the authorities,

who then decide which agents to admit. We show that a mechanism implements a dominant

strategy for an authority c if and only if it is the optimal APM A∗c characterized by Theorem

1 (Theorem 5). Moreover, in any equilibrium in which authorities use the optimal APM, the

equilibrium allocation is the unique stable matching of the economy (Proposition 9). More-

over, this is true whatever the order in which the authorities admit agents. These results

26We extend this result to discrete markets in Theorem 9 in Appendix G.4, replacing the unique stable
matching with the agent-optimal stable matching.

27Of course, it is not a dominant strategy for authorities to report truthfully (i.e., use the optimal APM)
under deferred acceptance. This has nothing to do with their using APM or restricting attention to DA: it
is not possible to find a stable matching mechanism that makes truth-telling dominant for authorities (see
Theorem 5.14 in Roth and Sotomayor, 1990).
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imply that one could advise authorities to use APMs with confidence that outcomes will be

stable and that they could do no better under any alternative mechanism in decentralized

allocation contexts.

Efficient Mechanisms. In our main analysis, as is standard in market design, we consid-

ered the problem of implementing stable allocations. It is also natural to ask what kind of

mechanisms might implement allocations that are efficient for the authorities. In Appendix

F, we study authority-efficient mechanisms. Considering utilitarian efficiency over authori-

ties as our welfare criterion, we show that the unique stable allocation is generally inefficient

(Proposition 10). We propose an augmentation of an APM to solve this problem, an adap-

tive priority mechanism with quotas (APM-Q). When authorities evaluate the scores (but

not necessarily diversity) in the same way, we show that an APM-Q implements efficient

allocations (Theorem 6). The idea behind this hybrid mechanism is to construct a fictitious

aggregate authority in our single object setting and use aggregate, market-level priorities

with authority-specific quotas to implement efficient allocations.

5 A Practical Method to Implement APM as a Market

Design Solution

We have so far shown theoretically that APM outperform conventional priority and quota

mechanisms and we have shown in multi-authority contexts that the combination of APM

with deferred acceptance implements stable allocations. Given these desirable theoretical

properties, we argue that adopting APM has the scope to improve the allocation of resources

in many two-sided matching contexts.

In this section, we demonstrate how to practically implement APM as a market design

solution. We do this in two steps. First, we describe a general three-step roadmap for how

APM can be implemented in practice. Second, as a proof-of-concept exercise, we use data

from Chicago Public Schools to show that: (i) APM can be easily designed, (ii) APM can

be simply communicated to stakeholders, and (iii) the gains from switching to APM are

necessarily positive and may also be quantitatively significant.

5.1 A General Methodology to Implement APM in Practice

Implementation of APM in practice is simple and can be achieved via a three-step approach.

Step I: Understand the Preferences of the Authorities. As in any other market

design solution, the market designer must understand the preferences of the authorities.
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This can be achieved in at least three ways. The first and simplest approach is simply to

ask authorities to report their preferences. This is possible if authorities can determine and

communicate their preferences. A second, and likely more practical strategy, would be to

adopt a discrete-choice revealed-preference approach: ask the authorities to compare pairs

of allocations for a large set of allocations and use the corresponding revealed preferences to

set identify the utility functions that can represent these preferences. This second approach,

which dates back to at least McFadden (1986), can be implemented by using standard

econometric methods and is widely used in marketing and policy analysis (see Ben-Akiva,

McFadden, and Train, 2019, for a review).28 A third approach would be to estimate their

preferences based on historical data, e.g., by using the admissions rules adopted in previous

years to structurally estimate preferences that are consistent with these rules. This approach

is less desirable than the discrete-choice approach but is likely to be feasible in a larger set of

circumstances and/or as an initial proof-of-concept exercise that can demonstrate the utility

of the market design approach to the stakeholders. We will shortly adopt this third approach

and use observational data from Chicago Public Schools to estimate preferences.

An important feature of this step is that we only require the preferences of the authorities

and not their beliefs about the market they face. This is because the optimal APM from

Theorem 1 can be computed using only information about the authorities’ preferences. This

is an important property of the optimal APM that is not shared by priority and quota

mechanisms: outside of the specific and knife-edge conditions on preferences described by

Theorem 2 (risk-neutrality and extreme risk-aversion), the optimal design of priority and

quota mechanisms requires not only the elicitation of preferences but also the elicitation

of beliefs about the distribution of agent characteristics in the population. We provided

an explicit example of this fact in Section 2.29 While the elicitation of preferences may be

demanding, it is always necessary to design optimal (or improved) mechanisms and evaluate

their effectiveness. Adopting the APM approach allows the market designer to sidestep

entirely the even more demanding task of jointly estimating both preferences and beliefs.

Step II: Compute and Communicate the Optimal APM. Once preferences have

been recovered, Theorem 1 provides an explicit formula for the optimal APM and its com-

putation is immediate. The communication of the optimal APM to stakeholders is also

simple and, in addition to reporting the function that describes the optimal APM, can be

achieved via a tabular format in which the score boost that agents from various groups

receive is described for different levels of admissions of that group to a school.

We provide a simple example of how that could be done in Table 1. Suppose that there are

28In the context of psychology, the approach dates much further back to Thurstone (1931).
29See Footnote 10.
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Table 1: A Simple Example of How to Communicate APM to Stakeholders

School: Great School

Score Boost
Number Admitted

0 5 10 15 20 25 ...

Group

Blue +10 +8 +6 +4 +2 +0 ...
Red +5 +3 +1 +0 +0 +0 ...
Green +0 +0 +0 +0 +0 +0 ...
Orange +10 +8 +6 +4 +2 +0 ...

Note: The table reports the score boost that an individual in each group receives at Great School
depending on the number of people that have been admitted from their group. For example, a
Blue individual will receive 6 bonus points for admission when 10 Blue individuals are admitted to
Great School.

four groups M = {Red,Green,Blue,Orange} and consider an authority c = Great School.

After computing the optimal APM A∗c , we can print the additive priority boost that the APM

awards h(A∗m,c(xx,c)) − h(s) = u′m,c(xm,c) as a function of xm,c. Communication strategies

like Table 1 provide a simple way to communicate how APM functions to stakeholders.

There are three further practical advantages of APM that Table 1 illustrates. First, to

achieve diversity, it is not necessary to treat different groups differently ex ante. This is

because even if score boosts are ex ante identical, this does not mean that individuals of

different groups will receive the same realized score boost ex post. In this example, Blue and

Orange individuals receive the same score boosts as a function of the number of individuals

that are admitted from their groups. However, if Orange individuals were to score worse

ex post and fewer were to be admitted, then Orange individuals would receive higher score

boosts. This constitutes a significant benefit of APM over priority mechanisms, which must

treat different groups differently ex ante to achieve a more equitable allocation of resources

ex post. Indeed, the optimal APM we will compute for the CPS in Section 5.2.3 treats all

groups symmetrically ex ante while yielding more equitable allocations ex post. We believe

this feature has the potential to make affirmative action more acceptable to the general

public. This is because a symmetric APM ensures that effective affirmative action is due

to inherent inequality in the distribution of scores and not the preferences of the authority.

Moreover, while a general APM is slightly more complex to communicate than a priority

mechanism, which would require only one column of Table 1, a symmetric APM is simple to

communicate as it requires only a single row of Table 1.

Second, while it is of course ideal to communicate the optimal APM which will be smooth,

it is possible to “coarsen” the APM into a smaller set of tiers—as illustrated in the tabular

format—if this better facilitates transparent communication to stakeholders.
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Third, it may be simpler to communicate an APM than a quota mechanism. This is

because recent work has shown that precedence orders, an essential component of describing

a quota mechanism, are hard for even administrators to understand and have great effect on

the final allocation.30 Moreover, precedence orders increase considerably the dimensionality

of quota mechanisms. For example, a quota mechanism with 4 groups does not only need

to specify the quota levels for each group, but also the order in which the 5 different types

of seats (including the merit seats that are not reserved for any group) will be processed,

which can take 5! = 120 different values.

Step III: Implement the Optimal APM Using the DA Algorithm. With the opti-

mal APM computed and communicated, all that remains is to implement it. As Theorem 4

shows, running the agent-proposing deferred acceptance algorithm, in which all authorities

tentatively accept and reject agents by running the optimal APM on the set of agents that

apply, implements stable allocations. Moreover, as Theorem 9 in Appendix G.4 shows, the

combination of agent-proposing DA and the optimal APM in a discrete matching environ-

ment always implements the agent-optimal stable allocation. Thus, standard DA implemen-

tations need only be updated with the optimal APM to practically implement APM as a

market design solution. A benefit of this DA implementation is that it is strategy-proof

for the agents, i.e., it is dominant for agents to report their preferences to the mechanics,

truthfully.

5.2 A Proof-Of-Concept: Implementing This Roadmap for Chicago

Public Schools

To show how this roadmap could be practically implemented, we now use Chicago Pub-

lic Schools (CPS) data in a proof-of-concept exercise. We first provide some institutional

background on the current CPS policies. We then implement each of the three steps of our

roadmap to estimate the preferences of CPS, compute the optimal APM, and benchmark

the gains from switching to the optimal APM from the current policy.

5.2.1 Institutional Context on Chicago Public Schools

We first describe the institutional context of CPS. Under current policy, CPS admits students

to its selective exam schools based on two criteria. First, CPS ranks students according to a

30For example, Dur, Kominers, Pathak, and Sönmez (2018) show that the use of an inappropriate prece-
dence order lead to the failure of walk-zone priority in Boston, Dur, Pathak, and Sönmez (2020) show that
by changing the precedence order, CPS affected the allocation of fifteen percent of students without chang-
ing the quota levels and Pathak, Rees-Jones, and Sönmez (2023) demonstrate that reserve systems face
widespread misunderstanding by the public.
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score that combines the results of a specialized entrance exam, prior standardized test scores,

and grades in prior coursework. This composite score ranges from 0 to 900 and higher-scoring

students are admitted before lower-scoring ones, reflecting CPS’s desire to allocate seats in

exam schools to the students with the best academic standing. In our model, these are the

students’ scores. Second, CPS divides the census tracts in the city into four tiers based

on socioeconomic characteristics.31 Tier 1 tracts are the most disadvantaged, while Tier 4

tracts are the most advantaged. This is reflected in the composite scores of students from

Tier 1, who represent 25% of the city’s population but comprise relatively few of the high-

scoring students (Ellison and Pathak, 2021). As a result, Tier 1 students would have a very

small share in the city’s top exam schools without affirmative action. To ensure more equal

representation across socioeconomic status in these schools, between 2013 and 2017 CPS

implemented a quota policy that reserves 17.5% of the seats for each tier, yielding a total of

70% reserve seats and 30% merit slots that are open to students from all tiers. CPS allocates

the seats by first assigning the highest-scoring students (regardless of their tier) to the merit

slots and then the highest-scoring students from each tier to the 17.5% reserve seats.

We focus on the most selective CPS school, Walter Payton College Preparatory High

School (Payton), which has the highest cutoffs for each tier in each year in our data and

would have very few tier 1 students without affirmative action.32 Table 2 presents the cutoff

scores of each tier (i.e., the composite score of the last admitted student from each tier).

We make two observations. First, the cutoff students from less advantageous tiers face

is lower than the cutoff for students from more advantageous tiers. Therefore, CPS has a

revealed preference (and not merely a stated preference) for a diverse student body.

Second, cutoff scores vary across years. This implies that the distribution of applicant

characteristics varies from year to year. Given this uncertainty and the fact that CPS uses

a policy that processes quotas after open slots, we know by Theorem 2 that CPS’ baseline

policy cannot be rationalized as optimal (even if they are extremely risk-averse). Thus,

without even estimating their preferences, we know that the gains from the optimal APM

will be strictly positive. Nevertheless, it is always possible that the gains from APM could

31Concretely, 800 census tracts are divided into four tiers based on six characteristics of each census tract:
(i) median family income, (ii) percentage of single-parent households, (iii) percentage of households where
English is not the first language, (iv) percentage of homes occupied by the homeowner, (v) adult educational
attainment, and (vi) average Illinois Standards Achievement Test scores for attendance-area schools. These
characteristics are then combined to construct the socioeconomic score for the tract. Finally, the tracts are
ranked according to socioeconomic scores and partitioned into 4 tiers with approximately the same number
of school-age children. See Ellison and Pathak (2021) for a more detailed account of the CPS system.

32This approach follows the analysis in Ellison and Pathak (2021), who focus on the two most competitive
schools, Northside College Preparatory High School (Northside) alongside Payton. In the years that we
study, the cutoff scores for Northside are below some other schools frequently, which is why we restrict
attention to Payton.
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Table 2: Admissions Cutoff Scores for Payton

Cutoff Score 2013 2014 2015 2016 2017

Tier 1 801 838 784 769 771
Tier 2 845 840 831 826 846
Tier 3 871 883 877 853 875
Tier 4 892 896 891 890 894

Note: The table reports the score of the lowest-scoring student that was admitted to Payton in
each of the four tiers and five years.

be small. To quantify the size of these gains and demonstrate what the optimal APM might

look like, we now follow our three-step approach.

5.2.2 Step I: Understanding Preferences

We perform our preference estimation in two sub-steps: establishing a parametric class of

preferences for the authority and then estimating the parameters.

Preferences. We assume a parsimonious, parametric form for CPS’s preferences. In par-

ticular, we impose that the preferences of CPS over the scores and diversity of the student

body are represented by the following parametric utility function:

ξ(s̄, x; β, γ) = s̄+
4∑
t=1

β|xt − 0.25|γ (20)

where s̄ is the average score of admitted students and xt ∈ [0, 1] is the proportion of tier t

students. Motivated by CPS’ desire to allocate the highest-scoring students, ξ is increasing

in s̄. To model the diversity preferences of CPS, we assume that CPS loses as the gap from

equal representation (which corresponds to xt = 0.25 of each group) in each tier increases.

We do this through the functional form β|xt − 0.25|γ. The parameters β and γ index the

slope and curvature of utility in losses from unequal representation and are the two free

parameters of our framework. The preferences that we assume follow Ellison and Pathak

(2021), but also allow for a score-diversity trade-off that depends on the level of diversity.

Our goal in assuming these preferences is to arrive at some sense of the gains from APM while

acknowledging that it is, as in all contexts, impossible to know the parametric class in which

the authority’s preferences lie. To probe robustness to this functional form assumption, in

Appendix C.2 we consider two other parametric utility functions that: i) allow for asymmetric

effects of under-representation and over-representation, and ii) only consider losses from

under-represented tiers.
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Estimation. We estimate β and γ to best rationalize the pursued policy choice of 17.5%

reserves for each tier as optimal within the class of all reserve policies. We believe this to be

a reasonable approach as the size of the reserves is an important issue that is decided only

after much deliberation.33 Moreover, CPS has used the size of the reserves as a policy tool,

increasing them from 15% to 17.5% in 2012 and is currently deliberating another change

that would further boost the representation of tier 1 and tier 2 students (Chicago Public

Schools, 2022). Given our functional form assumptions, the optimality of the chosen reserve

sizes yields moment conditions that we use to estimate the parameters β and γ.

Formally, we index reserve mechanisms by the reserve sizes of the four socioeconomic tiers

r = (r1, r2, r3, r4). We let s̄(r, y) and x(r, y) denote the average scores and tier percentages

that would be obtained in year y, with distribution Fy, under reserve policy r. The payoff

of the policymaker under reserve policy r is given by Ξ(r,Λ; β, γ), as per Equation 7:

Ξ(r,Λ; β, γ) = EΛ[ξ(s̄(r, y), x(r, y); β, γ)] (21)

where the expectation is taken over distributions of agents’ characteristics Fy under the

subjective probability measure Λ over such distributions. Define the expected marginal

benefit of increasing reserve i and decreasing reserve j as:

Gij(r,Λ; β, γ) =
∂

∂ri
Ξ(r,Λ; β, γ)− ∂

∂rj
Ξ(r,Λ; β, γ) (22)

Any (interior) optimal reserve policy r∗ must equate the expected marginal benefit of increas-

ing reserve i and decreasing reserve j at r∗ to zero for all (i, j) pairs, i.e., Gij(r
∗,Λ; β, γ) = 0

for all {i, j} ⊂ {1, 2, 3, 4} such that j > i. These six first-order conditions yield six moments.

We take empirical analogs of the theoretical moments and estimate preference parameters

by minimizing the sum of squared deviations of these moments from zero. We take CPS’

pursued reserve policy from 2012 to 2017 as optimal, r̂∗ = (0.175, 0.175, 0.175, 0.175). We

estimate the empirical joint distribution of students’ scores and tiers in CPS in each year F̂y

for y ∈ {2013, 2014, 2015, 2016, 2017}. We then estimate the distribution over distributions

by setting Λ̂ as a distribution that places equal probability on each of these five measured

distributions, i.e.,

PΛ̂[F = F̃ ] =

1
5
, if F̃ = F̂y for y ∈ {2013, 2014, 2015, 2016, 2017}

0, otherwise.
(23)

We plug these sample estimates into the theoretical moment functions. This yields six

33These points are emphasized in Dur, Pathak, and Sönmez (2020): “This change was made at the urging
of a Blue Ribbon Commission (BRC, 2011), which examined the racial makeup of schools under the 60%
reservation compared to the old Chicago’s old system of racial quotas. They advocated for the increase in
tier reservations on the basis it would be “improving the chances for students in neighborhoods with low
performing schools, increasing diversity, and complementing the other variables.”
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Figure 4: The Estimated Optimal APM
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Note: This figure plots the change in a student’s score when fraction y of students in their own tier
has already been admitted under the estimated optimal APM, A∗. At y = 0.25 (the vertical dashed
black line), the score is unchanged. For y < 0.25, students receive a score boost. For y > 0.25,
students receive a score penalty. The range of the x-axis, [0.1, 0.45], is chosen to cover the full range
of fractions of admitted students under both the optimal APM and the CPS reserve policy from
all tiers in all years of our sample (see Figure 5).

empirical moment functions, Gij(r̂
∗, Λ̂; β, γ), that depend only on the preference parameters.

Motivated by the theoretical necessity of Gij(r
∗,Λ; β, γ) = 0, we estimate the preference

parameters by minimizing the sum of squared deviations of the empirical moments from

zero:

(β∗, γ∗) ∈ arg min
β,γ

4∑
i=1

∑
j>i

Gij(r̂
∗, Λ̂; β, γ)2 (24)

Performing this estimation yields estimated parameter values of β∗ = −209.5 and γ∗ = 2.11.

5.2.3 Step II: Computing and Communicating the Optimal APM

In Figure 4, we illustrate how the estimated optimal APM changes students’ scores to arrive

at their ultimate priorities. In accordance with the preferences we have assumed, students

receive a score boost when their tier is underrepresented and a score penalty when their tier

is overrepresented. As we found γ∗ = 2.11, the estimated diversity preference is very close

to quadratic. Thus, the optimal APM is very close to linear. From Theorems 1 and 2, we

know that this APM achieves the first-best allocation in each year while the implemented

quota policy does not.

In Table 3, we demonstrate how the estimated optimal APM for CPS can be communi-

cated to stakeholders using the tabular approach presented in Table 1. We restrict attention

to the observed proportions of students from each tier [0.10, 0.45] and recalibrate the score
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Table 3: The Estimated Optimal APM in a Simple Tabular Format

Walter Payton College Preparatory High School

Score Boost
Percentage Admitted

10 15 20 25 30 35 40 45

Group

Tier 1 +128 +108 +90 +74 +58 +39 +20 +0
Tier 2 +128 +108 +90 +74 +58 +39 +20 +0
Tier 3 +128 +108 +90 +74 +58 +39 +20 +0
Tier 4 +128 +108 +90 +74 +58 +39 +20 +0

Note: The table reports the score boost that an individual in each group receives depending on the
number of people that have been admitted from their group, rounded to the nearest integer. As the
proportion of admitted students from each group under the Optimal APM has a range in [0.10, 0.45]
(see Figure 5), the score boost is calibrated to be zero at the highest level of representation and set
to be the maximum value of +128 for representation below 10% and zero above 45%.

boost so that it is equal to zero at the highest level of representation. We believe this re-

calibration will be useful in communication as it is only required to keep track of bonuses

instead of bonuses and penalties, which may look controversial to some stakeholders. The

optimal APM corresponds to giving students of each tier a score boost of 128 points out of

a possible 900, equivalent to 14.2% of the total available points. This boost decreases to 0

almost linearly as the representation of a group approaches 45% of the student body.

As the assumed preferences treat all groups in the same way, so does the optimal APM,

and so the rows of Table 3 are identical. Therefore, the optimal APM treats groups in a

symmetric manner and a group receives score boosts relative to another if and only if its

members have systematically lower scores. Any realized affirmative action is therefore due

to differences in the score distributions of groups of students. As we have highlighted, this

contrasts with priority policies that give explicit score boosts to certain groups (that only

depend on the group, and not their representation) at the expense of others to affect the

allocation.

5.2.4 Step III: Implementing the Optimal APM and Computing its Gains

We now use our estimated model to implement the optimal APM instead of the pursued

reserve policy between 2012 and 2017 to quantify the welfare gains from using APM.34 To

do this, we compare the empirical payoff Ξ(φ, Λ̂, β∗, γ∗) under two mechanisms: the pursued

quota policy, r∗, and the optimal APM from Theorem 1, A∗. In words, the empirical payoff

from Mechanism φ is the average estimated utility (i.e., given β∗ and γ∗) of the authority of

34As we are studying one authority for simplicity, the implementation is simple and does not require the
DA algorithm.
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Figure 5: Comparing Admissions under the Optimal APM and the CPS Policy
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Note: Each point corresponds to one of the four tiers of students in one of the five years under
either the optimal APM or the CPS policy. The x-axis corresponds to the average score of those
admitted from that tier in that year under that policy. The y-axis corresponds to the fraction of
admitted students from that tier in that year under that policy.

the allocations that φ implements under the empirical distribution over distributions (i.e.,

under Λ̂).

The empirical payoff under APM is 876.9, while it is 874.8 under the CPS reserve policy.

Thus, the gains from APM are equivalent to increasing average scores by 2.1, holding diversity

fixed. To benchmark the size of the gains, we require units in which they can be meaningfully

expressed. To this end, we define the loss from underrepresentation as the payoff lost by

CPS under its baseline policy from not admitting a fully balanced class, while holding fixed

the average score of the class. This is equal to 5.6 points under our estimated parameters.

Thus, the gains from APM are equal to 37.5% of the loss from underrepresentation incurred

under the CPS policy.35

To contextualize the magnitude of this improvement, we can compare the gains from the

optimal APM to the gains from the 2012 CPS reform that gave rise to the CPS policy from

2012-2017 and increased the size of all reserves from 15% to 17.5%. Under the estimated

preferences, the empirical payoff under the 15% reserve rule is 873.9, and so the gains from

the reform are equivalent to increasing average scores by 0.9. Thus, the gains from switching

to the optimal APM are 2.3 times larger than the gains from this recent reform.

These estimates suggest that the gains from APM are economically meaningful. These

gains stem from the variation across years in the joint distribution of student scores and

35This is equivalent to increasing the percentage of students from tier 1 from 0.179 to 0.21 and decreasing
the percentage of students from tier 4 from 0.407 to 0.378. This corresponds to swapping 8.7 students from
the most overrepresented group (tier 4) for the most underrepresented group (tier 1) each year.
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Figure 6: Robustness of the Gains from APM
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Note: This chart plots the difference in empirical payoffs from the optimal APM and CPS reserve
policy under alternative parameter values, with the shaded colors corresponding to the numerical
value of the gains from APM, ranging from 2.0 to 3.5. The black ‘+’ indicates our baseline parameter
values. The ranges for the axes are obtained by estimating β and γ separately for each year of our
data and separately taking the minimum and maximum estimated values of each set of estimated
parameters.

tiers. This can be seen in Table 2, which shows the variability in the scores of the marginally

admitted students from tiers 1, 2, and 3. More systematically, we visualize the difference

in outcomes under CPS’ reserves and the optimal APM by plotting the average scores and

fraction admitted for each tier for each year under both mechanisms in Figure 5. There are

two main differences between the allocations. First, the APM allocates systematically fewer

tier 1 and tier 4 students and more tier 3 students. These level effects are a consequence of the

second difference: the APM admits a greater fraction of students from each tier (especially

tiers 1 and 3) in the years in which that tier scores well. The fact that tier 3 students

score well relative to their admissions level is what leads the authority to admit more tier

3 students and fewer tier 1 students. These positive selection and level effects generate the

welfare gains.

5.2.5 Discussion of Robustness and Limitations

Robustness. Finally, we explore the robustness of our estimates to the three core as-

sumptions of our analysis: (i) that CPS has the correct beliefs about the distribution of

distributions of students, (ii) that CPS has preferences that lie in the assumed parametric

family, and (iii) that CPS optimizes the sizes of all four tiers.

Our baseline analysis took the beliefs of CPS to be the true empirical distribution of

student distributions over years. To test robustness to this assumption, we take Λ̂ as a Dirac
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distribution on the realized distribution for each of the five years of our data and re-estimate

the preference parameters. In Figure 6, we plot the difference in welfare under the optimal

APM and CPS reserve policies over the full range of these re-estimated parameters (i.e., we

take the minimum and maximum of the estimated parameters across years as the ranges

for the axes). We find that the gains from APM range from 2.0 to 3.5, while our baseline

estimate was 2.1. Thus, the point estimate of our welfare gains from APM appears to be

conservative by this metric.

To gauge robustness to the functional form we have assumed for CPS’ preferences, in

Appendix C.2, we estimate two different parametric specifications of utility. First, we con-

sider a utility function that includes a loss term only for underrepresented tiers (and does

not penalize overrepresentation of any tier). Second, we allow for CPS to care differentially

about underrepresentation and overrepresentation by considering a utility function with sep-

arate coefficients for underrepresented and overrepresented tiers. We find that, under these

specifications, the improvement from APM corresponds to 9.7% and 8.7% of the loss from

underrepresentation, which is attenuated relative to our baseline, but remains considerable.

To study the robustness of our findings to the assumption that CPS optimizes the size

of all four tiers, in Appendix C.1 we consider a setting where CPS sets a single reserve

size for all tiers. As we now have only one moment condition, we vary γ over the interval

[1,10], estimate β∗(γ) as the exact solution to the moment condition, and compute the gains

from APM as a function of γ. The minimum gain from APM over the estimated range is

1.98 points, which corresponds to 26.2% of the loss from underrepresentation under that

parameterization. This is slightly smaller than our baseline estimate but still considerable.

Limitations. We conclude our quantitative analysis by stating some limitations. First,

even though we argue that our functional form assumptions are reasonable and parsimo-

nious in this setting, there are possibly many other parametric utility functions that might

represent the preferences of CPS and these alternative preference structures may give dif-

ferent estimates of the gains from APM. This notwithstanding, we have documented the

robustness of our conclusion that APM deliver considerable gains relative to the status quo

under several alternative estimation methods and preference assumptions. Moreover, if a

researcher prefers an alternative structure for preferences, they could estimate the optimal

APM and the gains from the optimal APM using precisely the same approach that we de-

veloped. Furthermore, given that CPS does face uncertainty, we have shown theoretically

that the pursued quota policy (with merit slots processed first) cannot be rationalized as

optimal even if CPS’ preferences are extremely risk averse (by Theorem 2). Thus, while the

numerical gains from APM will be sensitive to parametric assumptions on utility and should

be treated as a benchmarking exercise, the fundamental conclusion that APM deliver strict
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gains is not sensitive to such assumptions.

Second, one of the main aims of the tier system employed by CPS is to increase racial

diversity in the prestigious exam schools. Indeed, the pursued tier system is a race-neutral

alternative that replaced the previous race-based system following two Supreme Court Rul-

ings in 2003 and 2007 (see Ellison and Pathak, 2021, for a summary). Because of this, CPS

uses tiers based on socioeconomic status instead of race and so we estimate their preferences

over tiers. Of course, if admission rules could depend on race, then one could perform a

similar analysis in which APM simply prioritize based on race rather than tier.

Finally, we also note that one key benefit of APM is to yield optimal allocations even

under rare circumstances. By assuming that the designer is risk-neutral (rather than risk-

averse) over their score-diversity index (i.e, g is taken to be linear rather than concave), we

are likely to understate the gains from APM in dealing with such situations.

6 Conclusion

Motivated by the use of priority and quota policies in resource allocation settings with

diversity concerns, we consider an authority that has preferences over scores and diversity.

We introduce Adaptive Priority Mechanisms (APM) and characterize an APM that is both

optimal and can be specified solely in terms of the preferences of the authority. We study the

priority and quota policies that are used in practice and show that they are optimal if and

only if the authority is either risk-neutral or extremely risk-averse over diversity. Moreover,

all authorities following the optimal APM implements the unique stable allocation when

combined with the standard deferred acceptance algorithm.

Our analysis therefore proposes a new and practical allocation mechanism that provably

improves upon existing alternatives and, we argue, can be transparently communicated to

stakeholders and implemented using a leading existing approach (the deferred acceptance

algorithm). Thus, we argue that APM could be a valuable tool for improving the design

of real-world allocation mechanisms in many settings, including the allocation of seats at

schools, places at universities, and medical resources to patients. Moreover, we have provided

a concrete roadmap for how APM could be designed, communicated, and implemented in

practice. Implementing this roadmap, our proof-of-concept analysis using Chicago Public

Schools data suggests that the use of APM has the potential to yield considerable welfare

gains over the status quo.
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Appendices

A Omitted Proofs

A.1 Proof of Proposition 1

Proof. Part (i): In state ω the payoff from admitting the highest-scoring minority students

of measure x(ω) is:

qω + (1 + γ − ω)x(ω)− 1

2

(
1

κ
+ γβ

)
x(ω)2 (25)

Thus, the x(ω) that solves the FOC is given by:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
(26)

Under our maintained assumptions, we have that:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
≤ 1 + γ − ω

1
κ

+ γβ
+ κ(ω − ω) < min{κ, q} (27)

and:

x(ω) =
κ(1 + γ − ω)

1 + κγβ
≥ 1 + γ − ω

1
κ

+ γβ
> κ(1− ω) ≥ 0 (28)

Thus, this level of minority admissions is feasible. Substituting, we have that:

V ∗ = qE[ω] +
1

2

E[κ(1 + γ − ω)2]

1 + κγβ
(29)

Consider now the APM A(y) = γ(1−βy). Agents are allocated the resource if their modified

scores exceed ω, with a uniform lottery over students with score exactly ω. Thus, in state

ω, this policy admits measure y(ω) minorities that solve the fixed point equation:

y(ω) = min

{
κ

∫ 1

0

I[s+ A(y(ω)) ≥ ω]ds, q

}
= min{κ (1−max{ω − A(y(ω)), 0}) , q} (30)

Denote the RHS of this fixed point equation by the function RHS(y, ω), which is contin-

uous and decreasing in y. Moreover, RHS(0, ω) = min{κ(1 − max{ω − γ, 0}), q} > 0 and

RHS(min{κ, q}, ω) < min{κ, q}. The second of these inequalities is true because the condi-

tion ω > γ(1−βmin{q, κ}) follows from our assumption that min{κ, q} > 1+γ−ω
1
κ

+γβ
+κ(ω−ω).

Thus, there exists a unique y(ω) implemented by the APM. Moreover, let yA(ω) denote the

unique solution to the equation 30, which gives the measure of admitted minority students
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under APM A at state ω.

yA(ω) = κ(1− (ω − γ(1− βyA(ω))))

= κ(1− ω + γ)− κγβyA(ω)

=
κ(1− ω + γ)

1 + κγβ

(31)

Thus, A implements the optimal level of minority admissions characterized in equation 26

and VA = V ∗.

Part (ii): First, if we admit all minority students over some threshold ŝ, the total score

of admitted minority students is κ
∫ 1

ŝ
sds. Moreover, when we admit measure x minority

students where x ≤ min{κ, q}, this admissions threshold is defined by x = κ
∫ 1

ŝ
ds = κ(1− ŝ).

Thus, we have that ŝ = 1− x
κ
. Finally, the residual measure q−x admitted majority students

all score ω. Thus, the total score is given by s̄ = qω+ (1−ω)x− 1
2κ
x2 for 0 ≤ x ≤ min{κ, q}.

As both quota and priority policies always admit the highest-scoring minority students, the

authority’s utility is given by:

U = qE[ω] + E[(1 + γ − ω)x]− 1

2

(
1

κ
+ γβ

)
E[x2] (32)

We now derive the admitted measure of minority students. In the absence of a priority

or quota policy, α = 0 or Q = 0, we have that x = κ(1 − ω) measure minority students is

admitted. Thus, under a quota policy Q, measure x = max{Q, κ(1− ω)} minority students

are admitted. Under a priority policy, the measure of admitted minority students is x =

κ
∫ 1

ω−α dx = κ(1 + α− ω). In each case x is capped by min{κ, q} and floored by 0.

The expected utility function over quotas is given by one of four cases. First, Q >

min{κ, q} and:

UQ(Q) = qE[ω] + (1 + γ − E[ω]) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2 (33)

Second, Q ∈ [κ(1− ω),min{κ, q}) and:36

UQ(Q) = qE[ω] + (1 + γ − E[ω])Q− 1

2

(
1

κ
+ γβ

)
Q2 (34)

Third, Q ∈ (κ(1− ω), κ(1− ω)) and:

UQ(Q) = qE[ω] +

∫ ω

1−Q
κ

(
(1 + γ − ω)Q− 1

2

(
1

κ
+ γβ

)
Q2

)
dΛ(ω)

+

∫ 1−Q
κ

ω

(
(1 + γ − ω)κ(1− ω)− 1

2

(
1

κ
+ γβ

)
(κ(1− ω))2

)
dΛ(ω)

(35)

36By our maintained assumptions we have that this interval has non-empty interior.
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Finally, Q ≤ κ(1− ω) and:

UQ(Q) = qE[ω] + E [(1 + γ − ω)κ(1− ω)]− 1

2

(
1

κ
+ γβ

)
E
[
(κ(1− ω))2] (36)

We claim that the optimum lies in the second case. See that in case two the strict maximum

is attained at Q∗ = 1+γ−E[ω]
1
κ

+γβ
∈ (κ(1 − ω),min{κ, q}), by our assumptions that min{κ, q} >

1+γ−ω
1
κ

+γβ
+ κ(ω − ω) and κ(1− ω) < 1+γ−ω

1
κ

+γβ
. Moreover, in case three, the first derivative of the

payoff is given by:

U ′Q(Q) =

∫ ω

1−Q
κ

(
(1 + γ − ω)−

(
1

κ
+ γβ

)
Q

)
dΛ(ω) (37)

Thus, checking that the sign of this is positive amounts to verifying that for all Q ∈ (κ(1−
ω), κ(1− ω)), we have that:

Q <
1 + γ − E[ω|ω ≥ 1− Q

κ
]

1
κ

+ γβ
(38)

As the RHS is an increasing function of Q, it suffices to show that:

κ(1− ω) <
1 + γ − ω

1
κ

+ γβ
(39)

which we have assumed. Moreover, the expected utility in the first case equals UQ(κ(1−ω)),

thus is lower than the optimum of the second case. The expected utility in the fourth case

equals UQ(κ(1 − ω)), thus is lower than the optimum of the third case. We therefore have

that:

VQ = qE[ω] + (1 + γ − E[ω])Q∗ − 1

2

(
1

κ
+ γβ

)
Q∗2 (40)

We now turn to characterizing the value of priorities. There are three cases to consider.

First, when κ(1 + α− ω) ≥ min{κ, q} we have that x = min{κ, q} and:

UP (α) = qE[ω] + (1 + γ − E[ω]) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2 (41)

Second, when κ(1 + α− ω) ≥ min{κ, q} ≥ κ(1 + α− ω) we have that:

UP (α) = qE[ω] +

∫ 1+α−min{ q
κ
,1}

ω

(
(1 + γ − ω) min{κ, q} − 1

2

(
1

κ
+ γβ

)
min{κ, q}2

)
dΛ(ω)

+

∫ ω

1+α−min{ q
κ
,1}

(
(1 + γ − ω)κ(1 + α− ω)− 1

2

(
1

κ
+ γβ

)
[κ(1 + α− ω)]2

)
dΛ(ω)

(42)

Finally, when min{κ, q} ≥ κ(1 + α− ω), we have that:

UP (α) = qE[ω] + E[(1 + γ − ω)κ(1 + α− ω)]− 1

2

(
1

κ
+ γβ

)
E[(κ(1 + α− ω))2] (43)
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We claim that the optimum under our assumptions lies only in the third case. First, we

argue that there is a unique local maximum in the third case. Second, we show the value in

the second case is decreasing in α. By continuity, the unique optimum then lies in the third

case.

First, it is helpful to write x̄(α) = κ(1 + α − E[ω]) and ε = κ (E[ω]− ω). The value in

the third case can then be re-expressed as:

UP (α) = qE[ω] + E[(1 + γ − ω) (x̄(α) + ε)]− 1

2

(
1

κ
+ γβ

)
E[(x̄(α) + ε)2]

= qE[ω] + (1 + γ − E[ω])x̄(α)− E[ωε]− 1

2

(
1

κ
+ γβ

)
x̄(α)2 − 1

2

(
1

κ
+ γβ

)
E[ε2]

(44)

Finally, we have that E[ε2] = κ2Var[ω] and E[ωε] = Cov[ω, ε] = −κVar[ω]. Thus:

UP (α) = qE[ω] + (1 + γ − E[ω])x̄(α)− 1

2

(
1

κ
+ γβ

)
x̄(α)2 +

κ

2
(1− κγβ) Var[ω] (45)

We then see that the optimal α∗ in this range sets x̄(α∗) = Q∗ < min{κ, q}. It remains only

to check that this optimal α∗ indeed lies within this case, or equivalently that κ(1+α∗−ω) ≤
min{κ, q}. To this end, see that κ(1 + α∗ − E[ω]) = Q∗, and:

κ(1 + α∗ − ω) = Q∗ + κ(E[ω]− ω) ≤ Q∗ + κ(ω − ω)

≤ 1 + γ − ω
1
κ

+ γβ
+ κ(ω − ω) < min{κ, q}

(46)

where the final inequality follows by our assumption that min{κ, q} > 1+γ−ω
1
κ

+γβ
+ κ(ω − ω).

Second, in the second case we have that the first derivative of the payoff in α is given by:

U ′P (α) =

∫ ω

1+α−min{ q
κ
,1}

d

dα

(
(1 + γ − ω)κ(1 + α− ω)− 1

2

(
1

κ
+ γβ

)
[κ(1 + α− ω)]2

)
dΛ(ω)

= κ

∫ ω

1+α−min{ q
κ
,1}

(
(1 + γ − ω)−

(
1

κ
+ γβ

)
(x̄(α) + ε(ω))

)
dΛ(ω)

(47)

Checking that the sign of this is negative for all α such that κ(1 + α − ω) ≥ min{κ, q} ≥
κ(1 + α− ω) then amounts to checking that:

x̄(α) >
1 + γ − E[ω|ω ≥ 1 + α−min{ q

κ
, 1}]

1
κ

+ γβ
− E

[
ε(ω)|ω ≥ 1 + α−min{ q

κ
, 1}
]

(48)

for all x̄(α) ∈ [min{κ, q}−κ(E[ω]−ω),min{κ, q}−κ(E[ω]−ω)]. So it suffices to check that

the minimal possible value of the LHS exceeds the maximal possible value of the RHS. A
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sufficient condition for this is that:

min{κ, q} − κ(E[ω]− ω) >
1 + γ − ω

1
κ

+ γβ
− κ(E[ω]− ω) (49)

Which holds as we assumed that min{κ, q} > 1+γ−ω
1
κ

+γβ
+ κ(ω − ω). Substituting the optimal

priority policy x̄(α) = Q∗ in equation 43, we obtain

VP = qE[ω] + (1 + γ − E[ω])Q∗ − 1

2

(
1

κ
+ γβ

)
Q∗2 +

κ

2
(1− κγβ) Var[ω] (50)

We have now established that:

∆ = VP − VQ =
κ

2
(1− κγβ) Var[ω] (51)

Part (iii): We have V ∗, VQ, VP . Thus, we can compute the loss from restricting to quota

policies:

LQ =
1

2

κVar[ω]

1 + κγβ
(52)

To find the loss from restricting to priority policies, we compute:

LP = LQ −∆ =
1

2
(κγβ)2 κVar[ω]

1 + κγβ
(53)

Enveloping over these losses yields the claimed formula.

A.2 Proof of Proposition 2

Proof. Adapting Definition 5 to single object setting, we say that a matching µ admits a

cutoff structure if there exists S(ω) = {Sm(ω)}m∈M such that µ(s,m;ω) = 1 if and only if

s ≥ Sm(ω). A mechanism admits a cutoff structure if it admits a cutoff structure at every

ω. We will first prove that any monotone APM admits a cutoff structure.

Lemma 2. A monotone APM admits a cutoff structure.

Proof. For a contradiction, assume it does not. Then there exists ω and matching µ im-

plemented by the monotone APM such that for some m ∈ M, s > s′, µ(s,m;ω) = 0 but

µ(s′,m;ω) = 1. Let xm denote the measure of group m agents allocated the resource at

µ. Since A is a monotone APM and s > s′, we have that A(xm, s) > A(xm, s
′), which

contradicts that A implements µ.

We now use Lemma 2 to show that a monotone APM implements a unique allocation.

Assume for a contradiction that Am(ym, s) is monotone and implements two different alloca-

tions, µ and µ′. Let xm and x′m denote the measure of type m agents assigned the resource

at µ and µ′. First, we prove that if µ and µ′ admit the same measure of agents from each

group, i.e., xm = x′m for all m, then the average score of admitted agents are the same. Let
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sm and s′m denote the score of the lowest-scoring type m agents assigned the resource at µ

and µ′.

Claim 1. If xm = x′m for all m ∈M, then s̄h(µ, ω) = s̄h(µ
′, ω)

Proof. Fix an m. Without loss of generality, let sm ≥ s′m. First, since APM has cutoff

structure and xm = x′m, we have that∫
Θ

I{s(θ) ∈ [s′m, sm],m(θ) = m}dFω(s,m) = 0 (54)

Note that this holds regardless of m′ ∈M and whether sm ≥ s′m or s′m ≥ sm. Therefore,

s̄h(µ, ω) =

∫
Θ

µ(s,m)h(s)dFω(s,m)

=
∑
m∈M

∫
Θ

I{s(θ) ≥ sm,m(θ) = m}h(s(θ))dFω(s,m)

=
∑
m∈M

∫
Θ

I{s(θ) ≥ s′m,m(θ) = m}h(s(θ))dFω(s,m)

=

∫
Θ

µ(s,m)h(s)dFω(s,m)

= s̄h(µ
′, ω)

(55)

where line equation holds from Equation 54 and all others are by definition. This finishes

the proof of the claim.

Therefore, if µ and µ′ do not yield identical measures, then there are m and n such

that xm > x′m and x′n > xn. Since xm > x′m, it follows that s′m > sm. Likewise x′n > xn

implies that sn > s′n. Note that these imply: (i) µ′(s′n, n) = 1 while µ′(s′m, n) = 0 and (ii)

µ(sm,m) = 1 while µ(s′n, n) = 0. Thus, the following inequalities hold:

An(s′n, x
′
n) > Am(s′m, x

′
m) ≥ Am(sm, xm) > An(s′n, xn) ≥ An(s′n, x

′
n) (56)

where the first inequality follows from (i), the second inequality follows from the fact

that x′m < xm and A is monotone, the third inequality follows from (ii) and the fourth

inequality follows from the fact that xn < x′n and A is monotone. This equation yields

An(s′n, x
′
n) > An(s′n, x

′
n), which is a contradiction. Therefore, all allocations implemented by

A yield the same x. Thus, from Lemma 2, if a monotone APM A implements µ and µ′, both

allocations admit the highest-scoring measure xm agents from group m and can differ (at

most) on a measure 0 set, proving that all allocations implemented by A are essentially the

same.
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A.3 Proof of Theorem 1

Proof. We characterize the optimal allocation for each ω ∈ Ω and show that the claimed

adaptive priority mechanism implements the same allocation. Fix an ω ∈ Ω and suppress

the dependence of Fω and fω thereon, and define the utility index of a score as s̃ = h(s) with

induced densities over s̃ given by f̃m for all m ∈M. Let the measure of agents from any group

m ∈ M that is allocated the resource be xm ∈ [0, x̄m] where x̄m =
∫ h(1)

h(0)
f̃m(s̃)ds̃. Observe

that, conditional on fixing the measures of agents from each group that are allocated the

resource x = {xm}m∈M, there is a unique optimal allocation (i.e., ξ-maximal µ up to measure

zero transformations). In particular, as g and h are continuous and strictly increasing, the

optimal allocation conditional on x satisfies µ∗(s̃, m;x) = 1 ⇐⇒ s̃ ≥ s̃m(xm) for some

thresholds {s̃m(xm)}m∈M that solve:∫ h(1)

s̃m(xm)

f̃m(s̃)ds̃ = xm (57)

We can then express the problem of choosing the optimal x = {xm}m∈M as:

max
xm∈[0,x̄m], ∀m∈M

∑
m∈M

∫ h(1)

s̃m(xm)

s̃f̃m(s̃)ds̃+
∑
m∈M

um(xm) s.t.
∑
m∈M

xm ≤ q (58)

where a solution exists by compactness of the constraint sets and continuity of the objective.

We can derive necessary and sufficient conditions on the solution(s) to this problem by

considering the Lagrangian:

L(x, λ, κ, κ) =
∑
m∈M

∫ h(1)

s̃m(xm)

s̃f̃m(s̃)ds̃+
∑
m∈M

um(xm)

+ λ

(
q −

∑
m∈M

xm

)
+
∑
m∈M

κm(x̄m − xm) +
∑
m∈M

κmxm

(59)

The first-order necessary conditions to this program are given by:

∂L
∂xm

= −s̃′m(xm)s̃m(xm)f̃m(s̃m(xm)) + u′m(xm)− λ− κm + κm = 0 (60)

λ
∂L
∂λ

= λ

(
q −

∑
m∈M

xm

)
= 0 (61)

κm
∂L
∂κm

= κm(x̄m − xm) = 0 (62)

κm
∂L
∂κm

= κmxm = 0 (63)
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for all m ∈M. By implicitly differentiating Equation 57, we obtain that:

− s̃′m(xm)f̃m(s̃m(xm)) = 1 (64)

Thus, we can simplify Equation 60 to:

∂L
∂xm

= s̃m(xm) + u′m(xm)− λ− κm + κm = 0 (65)

Observe that all constraints are linear. Thus, if the objective function is strictly concave,

the first-order conditions are also sufficient. Observe by Equation 64 that s̃m(xm) is a

strictly decreasing function of xm, and all cross-partial derivatives are zero. Therefore, the

first summation is strictly concave. Moreover u′m is a decreasing function of xm by virtue of

the assumption that um is concave for all m ∈ M. Then the second summation is concave.

Thus, the objective function is strictly concave and the optimal allocation is unique.

Thus, to verify that our claimed adaptive priority mechanism is a first-best mechanism, it

suffices to show that the allocation it implements satisfies Equations 60 to 63. The adaptive

priority mechanism Am(ym, s) = h−1 (h(s) + u′m(ym))) in the transformed score space yields

transformed scores h (Am(ym, s)) = s̃+u′m(ym). Define xm as the admitted measure of agents

from group m under this mechanism. Agents in group m ∈ M are allocated the resource if

and only if s̃+ u′m(xm) ≥ sC for some threshold sC that solves:∑
m∈M

∫ h(1)

max{min{sC−u′m(xm),h(1)},h(0)}
f̃m(s̃)ds̃ = q (66)

We can therefore partition M into three sets that are uniquely defined: (i) interior MI =

{m ∈ M|sC − u′m(xm) ∈ (h(0), h(1))}; (ii) no allocation M0 = {m ∈ M|sC − u′m(xm) ≥
h(1)}; (iii) full allocation MI = {m ∈ M|sC − u′m(xm) ≤ h(0)}. For all m ∈ M0, we

implement xm = 0. For all m ∈MI , we implement xm = x̄m. For all m ∈MI , we implement

xm ∈ (0, x̄m). For any m ∈MI , the allocation threshold is s̃m(xm) = sC − u′m(xm). For any

m ∈M0, the allocation threshold is h(1). For any m ∈MI , the allocation threshold is h(0).

We now verify that this outcome satisfies the established necessary and sufficient condi-

tions. For all m ∈MI , by the complementary slackness conditions we have that κm = κm =

0. Substituting the above into Equation 60 for all m ∈MI we obtain that:

sC − λ = 0 (67)

which is satisfied for λ = sC . As q =
∑

m∈M xm, the complementary slackness condition for

λ is then satisfied. For all m ∈ M0, by complementary slackness we have that κm = 0 and

Equation 60 is satisfied by:

κm = λ− h(1)− u′m(0) (68)

For all m ∈ MI , by complementary slackness we have that κm = 0 and Equation 60 is
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satisfied by:

κm = h(0) + u′m(x̄m)− λ (69)

This completes the proof of first-best optimality of A∗. Moreover, as the optimal allocation

is unique for all ω, any allocation that differs from the allocation implemented by the optimal

APM at any ω would not be first-best optimal. Therefore, any first-best-optimal mechanism

must implement essentially the same allocation as A∗.

A.4 Proof of Theorem 2

Proof. First, we prove the if parts of the results. Part (i): When um is linear, u′m is constant

and the first-best optimal adaptive priority mechanism is a priority mechanism P (s,m) =

h−1(h(s)+u′m). Part (ii): When ũ′m(xm) ≥ k for xm ≤ xtar
m and ũ′m(xm) = 0 for xm > xtar

m and∑
m∈M xtar

m < q, observe that the optimal mechanism admits xm ≥ xtar
m for all m ∈M in all

states of the world, but conditional on xm ≥ xtar
m for all m ∈ M admits the highest-scoring

set of agents. A quota Qm = xtar
m and QR = q−

∑
m∈M xtar

m , with D(R) = |M|+1 implements

this allocation and is first-best optimal for any authority that is extremely risk-averse.

Second, we prove the only if parts of the results. Part (i): Assume the utility functions

are not linear and let m denote a group where u′m is not constant in [0, q]. We say that a

state ω has full support if fw has full support. A state ω has full support in m and n if

fw(·,m) > 0 and fw(·, n) > 0 for some m and n and positive measures of only m and n. Let

ω be a state that has full support in m and n. Moreover, assume both groups have a measure

q of agents. We first establish that in any optimal allocation, agents from both groups are

allocated the resource.

Claim 2. If preferences are non-trivial, then the optimal allocation has xn, xm > 0.

Proof. Toward a contradiction, suppose without loss of generality that xn = 0. This implies

that xm = q. By the necessary first-order condition from Theorem 1 (combing Equations 60

and 63), we have that:

u′m(q) + h(0) = u′n(0) + h(1) + κn ≥ u′n(0) + h(1) (70)

where the inequality follows as κn ≥ 0. Thus, we have that:

u′m(q)− u′n(0) ≥ h(1)− h(0) > u′m(q)− u′n(0) (71)

where the first inequality follows by rearranging Equation 70 and the second follows by the

definition of non-triviality of preferences. This is a contradiction, thus xn, xm > 0 in any

optimal allocation.

We now establish an equation relating xn and xm that will be useful in the steps to come.
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Claim 3. Let ω have full support in m and n, µ denote a cutoff matching with cutoffs sm

and sn. Let xm and xn denote the measures of agents who are allocated the object at µ. µ is

optimal if and only if u′m(xm) + h(sm) = u′n(xn) + h(sn) and xn + xm = q.

Proof. By the necessary and sufficient first-order conditions from Theorem 1, we again have

that:

u′m(xm) + h(sm)− κm + κm = u′n(xn) + h(sn)− κn + κn (72)

By Claim 2, we have xm, xn > 0. Thus, by the complementary slackness conditions (Equa-

tions 62 and 63), we have that κm = κm = κn = κn = 0. Thus, we obtain:

u′m(xm) + h(sm) = u′n(xn) + h(sn) (73)

together with xn + xm = q, we have characterized the optimal allocation as claimed.

Continue to let xm and xn denote the measures of group m and n agents at the optimal

allocation under ω, and sm and sn denote the cutoff scores for admission. There are now

two cases to consider: (i) u′m(xm) and u′n(xn) are locally constant. (ii) u′m(xm) or u′n(xn)

are not locally constant. If we are in case (i), we will construct an ω′ with a unique optimal

allocation x′m and x′n where u′m(x′m) or u′n(x′n) is not locally constant, and then show jointly

how we arrive at a contradiction in both cases (i) and (ii).

To this end, suppose that we are in case (i). Let x∗m and x∗n denote the measures that

are closest to xm and xn such that u′m(xm) and u′n(xn) are not locally constant, i.e.,:

x∗k = arg min
x′k

{
|xk − x′k|

∣∣∣u′k(xk) = u′k(x
′
k) and for all ε > 0

either u′k(x
′
k − ε) > u′k(xk) or u′k(x

′
k + ε) > u′k(xk)

} (74)

As u′k is continuous, this minimum is attained and x∗k is well-defined. Without loss of

generality, assume |xm − x∗m| ≤ |xn − x∗n| and define both x̂m = x∗m and x̂n = q − x∗m. We

now construct a state ω′ such that x̂ is optimal:

Claim 4. Define ω′ where Fm(1) − Fm(sm) = x̂m, Fn(1) − Fn(sn) = x̂n and ω′ has full

support in m and n. The allocation that admits the highest-scoring x̂m group m agents and

the highest-scoring x̂n group n agents is the unique optimal allocation.

Proof. By Claim 3, as x̂m + x̂n = q by construction, x̂ is optimal if and only if Equation 73

holds. To this end, observe that if we admit x̂, then the cutoff scores are the same as under

x as Fm(1)− Fm(sm) = x̂m and Fn(1)− Fn(sn) = x̂n, by construction. Thus, we have that:

u′m(x̂m) + h(sm) = u′m(xm) + h(sm) = u′n(xn) + h(sn) = u′n(x̂n) + h(sn) (75)
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where the first equality holds by construction as x̂m = x∗m and u′m(x∗m) = u′m(xm), the second

equality holds by optimality of x, and the third equality holds as |xm−x∗m| ≤ |xn−x∗n|, which

implies that u′n(x̂n) = u′n(x∗n). Thus, Equation 73 holds, and x̂ is optimal, as claimed.

Observe that this construction also applies trivially in case (ii) with x∗m = xm. Thus, using

this construction, we can now study cases (i) and (ii) together. In state ω′, to implement

this optimal allocation, we must have that P (s,m) < P (sn, n) for all but a measure zero

set of s such that s < sm. We will now construct another state ω′′ such that any priority

mechanism with this property is suboptimal.

First, suppose that x∗m ≤ xm and fix some ε ∈ (0, x∗m). Define s̃m as solving the following

equation:

u′m(x̂m − ε) + h(s̃m) = u′n(x̂n + ε) + h(sn) (76)

We then have that:

s̃m = h−1 (h(sn) + u′n(x̂n + ε)− u′m(x̂m − ε)) < h−1 (h(sn) + u′n(x̂n)− u′m(x̂m)) = sm (77)

where the first equality rearranges Equation 76 and the second inequality uses the facts that

u′n(x̂n) ≤ u′n(x̂n + ε) and u′m(x̂m) < u′m(x̂m − ε). We now construct a state ω′′ such that

(x̂m − ε, x̂n + ε) is optimal.

Claim 5. Define ω′′ where 1−Fm(s̃m) = x̂m− ε, 1−Fn(sn) = x̂n + ε with full support in m

and n. The allocation that admits the highest-scoring (x̂m − ε, x̂n + ε) agents is the unique

optimal allocation.

Proof. Following the same steps as Claim 4, and the fact that Equation 76 holds by con-

struction, we have that the claim holds.

Observe that to implement this optimal allocation a priority mechanism must set P (s,m) ≥
P (sn, n) for all but zero measure s > s̃m. However, since s̃m < sm, this contradicts the op-

timality condition for state ω′ that P (s,m) < P (sn, n). This is because for all but measure

zero s ∈ (s̃m, sm), which we have established is non-empty, we have that:

P (s,m) ≥ P (sn, n) > P (s,m) (78)

which is a contradiction. To complete the proof, we need only consider the case that x∗m > xm.

In this case, we can apply essentially the same steps and the result follows. Concretely,

instead increasing x̂m by ε and following the same steps yields the required contradiction.

We have now constructed three states ω, ω′, ω′′ such that no priority mechanism can be

optimal in each state when the authority is not risk-neural, completing the proof.
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Part (ii): Assume that a quota policy is optimal, we now show that the authority’s

preferences must be extremely risk-averse. For each group m ∈ M, let cm ∈ [0, 1] and

cm 6= cn if m 6= n. Let ω be such that the scores of agents from each group m are uniformly

distributed between [cm, cm + ε], where ε is chosen to be small so that there is no overlap

of these supports and each group has measure q agents. Let mω denote the group with

the highest cm at ω. Now, compute the optimal allocation at ω and denote the measure of

admitted agents from each group at the optimal allocation by {x∗m(ω)}m∈M. We first show

that under any optimal quota policy, the level of the quotas must be set equal to the optimal

allocation for all but the highest-scoring group:

Claim 6. If a quota Q attains the optimal allocation, then for each m 6= mω, Qm = x∗m(ω).

Proof. If Qm > x∗m(ω), then we admit xm ≥ Qm > x∗m(ω), which is suboptimal as there is

a unique optimal allocation by Theorem 1. If Qm < x∗m(ω) and m 6= mω, then xm = Qm as

cmω > cm + ε and no agent from group m can claim a merit slot. This is suboptimal. Thus,

Qm = x∗m(ω) for all m 6= mω.

Next, create ω′ by changing the highest-scoring group, i.e., mω 6= mω′ . Let x∗mω(ω′)

denote the measure of admitted agents from group mω under ω′. Applying Claim 6, If Q

attains the optimal allocation, then it must be that Qmω = x∗mω(ω′). Define Q∗m by Q∗m = x∗m

for all m ∈M \ {mω} and Q∗mω = x∗mω(ω′).

Now, we have proved that if Q is an optimal policy, then Qm = Q∗m for all m ∈M\{mω}
and Qmω = Q∗mω . We now establish that merit slots must be processed after any positive

measure quota slots if the merit slots are of positive measure:

Claim 7. If there is a quota policy that attains the first-best, Q, then Qm = Q∗m and either∑
m∈MQ∗m = q, i.e., there are no merit slots (merit slot processing does not matter), or∑
m∈MQ∗m < q and merit slots are processed after any positive measure quota slots.

Proof. We have already proved Qm = Q∗m. If
∑

m∈MQ∗m = q, there are no merit slots and

any processing order yields the same result. If
∑

m∈MQ∗m < q, for a contradiction, assume

merit slots are processed before quota slots for group m and Q∗m > 0. There are two cases,

m 6= mω and m = mω. We start with the first case. Note that there is a cutoff sm for group

m with sm < cm + ε and all agents from group m who score above sm are allocated the

resource. Create ω′′ by taking measure xm/2 of these agents who are allocated the resource

and give them scores above cmω (the highest-scoring group at ω). The scores of the remaining

xm/2 agents are distributed uniformly at [cm, cm + ε].

We now observe that the optimal allocations at ω and ω′′ are the same. This is because

increasing the scores of already admitted agents does not change the preferences of the

54



authority of whom to admit. Moreover, the optimal allocation at ω′′ cannot be attained if

the quota slots for group m are processed after the merit slots. This follows as, if merit slots

are processed before quota slots for group m, a strictly positive measure of them would go

to group m agents at ω′′ since now they have a measure of agents with the highest scores,

which violates optimality.

This proves the claim for m 6= mω. To prove the result for m = mω, replicate the above

steps with ω′ where mω is not the highest-scoring group.

We now use these claims to establish that if quotas are first-best optimal, then (u, h)

must agree with (ũ, h̃) on optimal allocations.

Claim 8. The quota first policy with Qm = xtarm maximizes the utility with respect to ũ, h̃.

Proof. This is clear as for ũ, h̃, diversity utility dominates until xtarm and has no effect after.

This proves the result since if there exists a first-best optimal quota policy, then it is

rationalized by (ũ, h̃) with xtarm = Q∗m. Hence, if there is a first-best quota mechanism, the

authority is extremely risk-averse.

A.5 Proof of Proposition 3

Proof. Let x∗m denote the measure of group m agents in the optimal allocation, with x∗ =

{x∗m}m∈M. A priority policy P (s,m) = h−1(h(s) + u′m(x∗m)) = Am(x∗m, s) implements the

same allocation as the optimal adaptive priority mechanism and by Theorem 1, is optimal.

A quota mechanism with (Q,D) where Qm = x∗m implements x∗ for all D, and is therefore

optimal.

A.6 Proof of Theorem 3

Proof. We first prove the following lemma.

Lemma 3. Any stable matching is a cutoff matching.

Proof. Assume that µ is a stable matching. Let Sm,c = infθ{sc(θ) : m(θ) = m,µ(θ) = c}.
Since µ satisfies within-group fairness, for all m and s′ > Sm,c, if m(θ) = m and sc(θ) = s′,

µ(θ) �θ c. Moreover, from part (iv) of the definition of matching, this extends to the

case where s′ = Sm,c. Concretely, suppose that µ(θ) 6= c, c �θ µ(θ) and sc(θ) = Sm,c.

Consider a sequence of types {θk}k∈N with common group m and scores {sc(θk)}k∈N such

that sc(θk) > Sm,c for all k ∈ N and sk(θ)→ Sm,c. Define the set ΘE = {θ ∈ Θ : c � µ(θ)},
which must be open by part (iv) of the definition of a matching. We have that θk 6∈ ΘE for
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all k ∈ N but limk→∞ θk ∈ ΘE, which contradicts that ΘE is open. Thus, if µ is stable, then

it is also a cutoff matching.

Therefore, to characterize stable matchings, it is enough to characterize cutoffs that

induce a stable matching, which we call stable cutoffs.

Definition 6. A vector S is a market-clearing cutoff if it satisfies the following:

1. Dc(S) ≤ qc for all c.

2. Dc(S) = qc if Sm,c > 0 for some m ∈M.

Since an authority can admit different measures of agents from different groups, there

is a continuum of cutoffs that clear the market given S−c, as long as {(0, . . . , 0)} is not

the only market-clearing cutoff. Let I(S−c) denote the set of market-clearing cutoffs. Let

I∗(S−c) ⊆ I(S−c) denote the unique (by Lemma 2) cutoffs that implement the outcome under

APM A∗c when the authority faces the induced type measure over the set D̃c(S−c). Define

the map Tc : [0, 1]|M|×|C| → [0, 1]|M| as Tc(S) = I∗c (S−c) with T : [0, 1]|M|×|C| → [0, 1]|M|×|C|

given by T = {Tc}c∈C. We first show that the set of fixed points of T equals the set of stable

cutoffs and that T is increasing.

Claim 9. The set of fixed points of T equals the set of stable cutoffs.

Proof. If S∗, with corresponding matching µ∗ (by Lemma 3), is a fixed point of T , then each

c 6= c0 admits their most preferred measure qc agents in D̃c(S
∗
−c) (by Theorem 1). Note that

any Θ̂ that can block the matching must prefer c to their allocation at µ∗ and therefore

Θ̂ ⊂ D̃c(S
∗
−c). Then there cannot be a Θ̂ that blocks µ∗ at c since c already attains the

first-best utility under D̃c(S
∗
−c) from the definition of Tc(S) and Theorem 1. Conversely, if

S∗, with corresponding matching µ∗, is a not fixed point of T , then there exists c such that

Tc(S
∗) 6= S∗c . Let Θ̂ denote the set of agents who are not matched to c at µ∗ but have scores

greater than Tc(S
∗), and Θ̃ denote the set of agents who are matched to c at µ∗ but have

scores lower than Tc(S
∗). From optimality of A∗c (by Theorem 1), Θ̂ blocks µ∗ at c with

Θ̃.

Claim 10. T is increasing.

Proof. Fix an arbitrary c ∈ C and suppose that S ′−c ≥ S−c. Toward a contradiction suppose

that there exists m ∈ M such that t′c,m = Tc,m(S ′) = I∗c (S ′−c) < I∗c (S−c) = Tc,m(S) = tc,m,

i.e., the admissions threshold for group m at authority c goes down. Let f and f ′ be

the induced joint densities of agents over scores at c and groups by the sets D̃c(S−c) and

D̃c(S
′
−c), respectively. Let {xm,c}m∈M and {x′m,c}m∈M denote the measure agents who score
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above tm,c for their group (i.e., admitted under A∗c) under D̃c(S−c) and D̃c(S
′
−c), respectively.

As S ′−c ≥ S−c, we have that Dc(S−c, Sc) ⊆ Dc(S ′−c, Sc) for all Sc ∈ [0, 1]|M|. It follows

that f ′(θc) ≥ f(θc) > 0 for all θc = (sc,mc) ∈ [0, 1] × M. As t′c,m < tc,m, f ′ has full

support, and f ′ ≥ f , we have that the measure of admitted group m agents under increases

x′c,m > xc,m. But as
∑

k∈M x′k =
∑

k∈M xk = q, we know that there exists an m′ ∈ M such

that x′c,m′ < xc,m′ . It follows that t′c,m′ > tc,m′ , otherwise, if t′c,m′ ≤ tc,m′ , then x′c,m′ ≥ xc,m′ .

But now we have shown the following:

hc(t
′
c,m′) + u′m′,c(x

′
c,m′) > hc(tc,m′) + u′m′,c(xc,m′)

≥ hc(tc,m) + u′m,c(xc,m) > hc(t
′
c,m) + u′m,c(x

′
c,m)

(79)

where the first inequality follows by tc,m′ < t′c,m′ , xc,m′ > x′c,m′ , concavity of um and strictly

increasing hc. The second inequality follows by optimality. This is because the facts that

tc,m > 0 and t′c,m′ < 1 imply that κm = κm′ = 0 and so Equation 65 implies that:

hc(tc,m′) + u′m′,c(xc,m′)− κm′ = hc(tc,m) + u′m,c(xc,m) + κm (80)

with κm′ , κm ≥ 0. The final inequality follows as t′c,m < tc,m and x′c,m > xc,m. But this

contradicts the optimality condition for APM (Theorem 1), which implies that Tc 6= I∗c ,

which is a contradiction. Hence, for all c and m ∈M, Tc,m is an increasing function.

As T : [0, 1]|M|×|C| → [0, 1]|M|×|C| is monotone and [0, 1]|M|×|C| is a lattice under the

elementwise order ≥, Tarski’s fixed point theorem implies that the set of stable matching

cutoffs is a non-empty lattice.

Finally, we use the fact that the set of stable cutoffs is a complete lattice to argue that

there is a unique cutoff consistent with stability.

Claim 11. The stable matching cutoffs are unique.

Proof. Assume that there are multiple stable cutoffs. As the set of stable cutoffs is a lattice,

there exists a largest (S+) and smallest (S−) stable cutoffs, where S+ ≥ S−, with strict

inequality for some m ∈ M, c ∈ C as S+ 6= S−. But then, as there is full support of agent

types and authority c fills the capacity under stable cutoffs S+, it must exceed its capacity

under S−, which is a contradiction. Hence, we have shown that there exists a unique stable

matching cutoff.

The combination of Lemma 3 and Claim 11 completes the proof.

A.7 Proof of Proposition 4

Proof. If φ is equivalent to A∗c , Claim 9 implies that φ is consistent with stability.
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We prove consistency with stability implies that φ is equivalent to A∗c by the contra-

positive. To this end, suppose that φ is not equivalent to A∗c . It follows that there exists

a full-support density {f̃(sc,m)}sc∈[0,1],m∈M such that φ yields a different allocation than

A∗c under f̃ . The rest of the proof constructs a full-support measure F with unique stable

matching µF such that f̃ is the induced density of scores and groups of the agents who

demand authority c at µF . Given such an F , we will have that φ cannot be consistent with

stability as it yields a different allocation than A∗c , which itself yields µF (c), the set of agents

c is matched to in the unique stable matching.

We first define some notation. Given a density f , for any set of types Θ̌ ⊆ Θ, we define

the marginal density of agents with score sc ∈ [0, 1] at authority c in group m ∈M as:

fmarg(Θ̌)(sc,m) =

∫
Θ̌

I[sc(θ) = sc,m(θ) = m] dF (θ) (81)

To construct such an F , we proceed in three steps. First, take a full-support density f 0

that satisfies the following two conditions: i) Define Ŝc ∈ [0, 1]|M| as the cutoff vector that

obtains by applying A∗c to f̃ .37 We assume that f 0 is such that authority c’s cutoff vector

that is consistent with the unique stable matching, µF0 , coincides with Ŝc; ii) for all m ∈M
and sc < Ŝm,c, f

0
marg(Θ)(s,m) < f̃(s,m); and iii) all authorities have strictly positive cutoffs

for all groups at the unique stable matching.

Second, transform f 0 into a new density f 1 that differs from f 0 on the set of types that

is matched with c under µF0 , which we call Θc.
38 We define the scaling factor ι1(sc,m) as:

ι1(sc,m) =
f̃(sc,m)

f 0
marg(Θc)

(sc,m)
(82)

Moreover, we define:

f 1(θ) =

f 0(θ)ι1(sc(θ),m(θ)) if θ ∈ Θc,

f 0(θ) otherwise.
(83)

This changes the scores of the types who are allocated to c under µF 0 but does not change

their total measure, their composition, or their scores at any other authority. Thus, the

unique stable matching under f 1, µF 1 , coincides with µF 0 . Moreover, by assumption i) of

step 1, we have that f 1
marg(Θc)

(sc,m) = f̃(sc,m) for all m and sc ≥ Ŝm,c.

Third, transform f 1 into a new density f 2 that differs on the set of unmatched agents

under f 0 (and also therefore f 1 by step 2), Θ̃, and define the set of types who strictly prefer

c to their assignment under µF 0 (and also therefore µF 1 by step 2), Θ̂c.
39 We define a new

37Which exists as any monotone APM admits a cutoff structure (Lemma 3) and the optimal APM is
monotone (Theorem 1).

38Formally, Θc = {θ : θ ∈ Dc(µF 0), sc(θ) ≥ Ŝm(θ),c)}.
39Formally, Θ̃ = {θ : θ ∈ Dc(µF 1), sc(θ) < Ŝm(θ),c, sc′(θ) < S

µF1

m(θ),c′ for all c′ 6= c}, where S
µF1

m,c′ denotes
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scaling factor ι2(sc,m) as:

ι2(sc,m) =
f̃(sc,m)− fmarg(Θ̂c)

(sc,m)

fmarg(Θ̃)(sc,m)
(84)

which is strictly positive by assumption ii) of step 1. We then define f 2 as:

f 2(θ) =

f 1(θ)(1 + ι2(sc(θ),m(θ))) if θ ∈ Θ̃,

f 1(θ) otherwise.
(85)

By construction, f 2
marg(Θ̂c)

(sc,m) = f̃(sc,m) for all m and sc < Ŝm,c. Moreover, µF 2 = µF 1 =

µF 0 as all θ ∈ Θ̃ remain unmatched.

We have now constructed a full-support density f 2 with unique stable matching µF 2 (by

Theorem 3) such that the density over Dc(µF 2) coincides with f̃ . Moreover, by Claim 9,

A∗c selects µF 2(c) from Dc(µF 2). As φ selects a different allocation from Dc(µF 2) (as it has

density of types f̃), it is inconsistent with stability.

A.8 Proof of Lemma 1

Proof. Fix an arbitrary type θ ∈ Θ. Suppose that DAt(Q0)(θ) does not converge to some r ∈
R. As R is a finite set, this implies that there exist three time indices t0, t1, t2 ∈ N such that

t0 < t1 < t2 with the property that DAt0(Q0)(θ) = DAt2(Q0)(θ) 6= DAt1(Q0)(θ). Moreover,

we know that DAt1(Q0) must delete at least the top-ranked element of DAt0(Q0)(θ). As DA

only deletes elements, it cannot be true that DAt0(Q0)(θ) = DAt2(Q0)(θ).

A.9 Proof of Theorem 4

Let T tm,c denote the step t cut-offs for group m agents at authority c at iteration t of the

mapping T (see the proof of Theorem 3 for the formal definition) starting with the market-

clearing cutoff being 0 at all authorities. Formally, T t(S) = T ◦T t−1(S) with initial condition

T 1 = T (0). Similarly, let H t
m,c denote the step t cut-offs for group m agents at authority

c at step t of the Deferred Acceptance procedure when Chc is the optimal APM for all c.

Formally, H t
m,c = infθ∈{θ̃∈Chc(Tc(Qt)):m(θ̃)=m} sc(θ).

It is immediate that T 1
m,c = H1

m,c from the definitions and this forms the base case for

our proof by induction that H t ≤ T t for all t ∈ N. To this end, we now prove the inductive

step:

Claim 12. Suppose that H t′
m,c ≤ T t

′
m,c for all m and c for all t′ ≤ t. Then H t+1

m,c ≤ T t+1
m,c .

the group m cutoff at authority c′ at the stable matching µF 1 , which is strictly positive by assumption iii)
of step 2. Moreover, Θ̂c = {θ : θ ∈ Dc(µF 1), sc(θ) < Ŝm(θ),c}.
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Proof. Let Θt+1
m,c denote the set of agents admitted to c at iteration t+ 1 of the mapping T .

Formally

Θt+1
m,c = {θ ∈ Dc(T

t) and sc(θ) ≥ T t+1
m(θ),c} (86)

We now show that no authority receives an application under DA from an agent that is

preferable to the agents they have admitted at step t+ 1 of the iterative algorithm T .

Claim 13. If θ applies to c at step t+ 1 of DA and sc(θ) ≥ T t+1
m(θ),c, then θ ∈ Θt+1

m,c.

Proof. Suppose for a contradiction that θ applies to c at step t+ 1 of DA and sc(θ) ≥ T t+1
m(θ),c

but θ 6∈ Θt+1
m,c. By definition, we have that θ 6∈ Dc(T

t). Let c′ denote the authority such that

θ ∈ Dc′(T
t). By the definition of D, we then have that sc′(θ) ≥ T tm,c′ . As T is monotone,

sc(θ) ≥ T t+1
m(θ),c ≥ T tm(θ),c. Thus, both sc(θ) ≥ T tm(θ),c and sc′(θ

′) ≥ T tm,c′ and both c and c′

are attainable for θ at iteration t of T . As θ chooses c′ over c, we know that c′ �θ c. By the

inductive hypothesis, we have that for all t′ ≤ t, H t′

m(θ),c′ ≤ T tm(θ),c′ ≤ sc′(θ), θ is not rejected

from c′ in any previous step of DA. Thus, c′ is not deleted from the preference list of θ and

θ applies to c′ or a more preferred authority at step t + 1. Thus, θ does not apply to c at

step t+ 1 of DA, which is a contradiction.

Now suppose for a contradiction H t+1
m,c > T t+1

m,c for some m and c. By monotonicity of T

and the inductive hypothesis, we have that H t+1
m,c > T t+1

m,c ≥ T tm,c ≥ H t
m,c and H t+1

m,c > 0. As F

has full support, the set of group m agents that rank c first and have scores in (H t
m,c, H

t+1
m,c )

has strictly positive measure. Moreover, all such agents are tentatively admitted at c at step

t and rejected from c at step t+ 1. As some positive measure of agents are rejected at step

t+ 1, c must fill its capacity at step t+ 1.

Let x̂t+1
m,c denote the measure of group m agents admitted to c at step t+1 of DA and x̃t+1

m,c

denote the measure of agents in D̃c(T
t
−c) with sc(θ) ≥ T t+1

m,c . Combining the contradictive

hypothesis that H t+1
m,c > T t+1

m,c with Claim 13, we obtain that x̂t+1
m,c < x̃t+1

m,c, where the strict

inequality follows from the full-support assumption. As c fills its capacity at step t + 1 of

DA, there must be m′ such that x̂t+1
m′,c > x̃t+1

m′,c.

Moreover, Claim 13 and x̂t+1
m′,c > x̃t+1

m′,c imply that there exists θ′ admitted to c at step t+1

of DA such that m(θ′) = m′ and sc(θ
′) < T t+1

m′,c. Further, as H t+1
m,c > H t

m,c and H t+1
m,c > T t+1

m,c ,

there exists θ that applies to and is rejected by c at step t + 1 of DA such that m(θ) = m

and sc(θ) ≥ T t+1
m,c . Then we must have

A∗m′,c(x̃
t+1
m′,c, T

t+1
m′,c) > A∗m′,c(x̂

t+1
m′,c, sc(θ

′)) > A∗m,c(x̂
t+1
m,c, sc(θ)) > A∗m,c(x̃

t+1
m,c, T

t+1
m,c ) (87)

where the first and third inequalities holds by monotonicity of A∗ and second holds as θ′ is

accepted while θ is rejected at step t+ 1 of DA where c was using the optimal APM. Thus,

by full support, there exists a strictly positive measure of types with m(θ) = m′ who have

60



scores s(θ) ∈ (A∗m,c(x̃
t+1
m,c, T

t+1
m,c ), A∗m′,c(x̃

t+1
m′,c, T

t+1
m′,c)) and who are not assigned to c at step t+1

of the iteration of T . This is a contradiction as these agents must be admitted to c under

the APM.

Having shown that H t ≤ T t for all t ∈ N, we now show that H t is increasing:

Claim 14. H t
m,c is increasing for all m and c.

Proof. If c does not fill its capacity at time t, then H t
m,c = H t−1

m,c = . . . = H1
m,c = 0 and so

H t
m,c ≥ H t−1

m,c . Suppose now that c fills its capacity at time t.

Let xtm,c denote the measure of agents from group m that are accepted by c at step t of

DA. First, if xtm,c = xt+1
m,c for all m, then as all accepted agents reapply in t+ 1 and under the

optimal APM, Chc chooses higher scoring agents before lower scoring ones, H t+1
m,c ≥ H t

m,c.

Second, suppose that xtm′,c 6= xt+1
m′,c for some m′. As c fills its capacity, there exists m such

that xt+1
m < xtm. Moreover, as all agents admitted in step t reapply in step t + 1 of DA, we

have that H t+1
m,c > H t

m,c. Suppose for a contradiction there is an m′′ such that H t+1
m′′,c < H t

m′′,c.

As all agents admitted in step t reapply in step t + 1, we have xt+1
m′′ ≥ xtm′′ . However, this

contradicts that Chc is the optimal APM as

A∗m,c(x
t+1
m , H t+1

m,c ) > A∗m,c(x
t
m, H

t
m,c) = A∗m′,c(x

t
m′′ , H

t
m′′,c) > A∗m′′,c(x

t+1
m′′ , H

t+1
m′′,c) (88)

where the first and third inequalities hold as A∗ is a monotone APM and the second equality

holds the adaptive priority of the cutoff agent from each group must be equal by the definition

of an adaptive priority mechanism.

Let T ∗ = limt→∞ T
t denote the cut-offs in the unique stable matching, µ. Claims 12 and

14 imply that H t → H∗ with H∗ ≤ T ∗. Moreover, as H t ≤ T ∗ for all t, no agent is rejected

from their match under µ at any step of DA, which implies that all agents are matched to

a weakly more preferred authority under the DA outcome µDA compared to µ.

Claim 15. µDA = µ.

Proof. It is enough to show that no θ strictly prefers µDA(c) to their match under µ. Suppose

that there is a θ such that c = µDA(θ), c′ = µ(θ), m(θ) = m, and c �θ c′. This implies

that sc(θ) < T ∗m,c as otherwise θ would be matched to c in µ. Fix a ε ∈ (0,minm,c T
∗
m,c),

which must exist as T ∗ > 0. Now consider the set of types θ′ such that sc(θ
′) ∈ (sc(θ), T

∗
m,c),

sĉ(θ
′) < ε for all ĉ 6= c, m(θ′) = m and c is �θ′-maximal. This set of types has strictly

positive measure, have µ(θ′) = c0, and apply to c in the first round of DA. As c = µDA(θ)

and sc(θ
′) > sc(θ), we have that c = µDA(θ′). But as all authorities fill their capacities at

T ∗, this implies that there exists some positive measure set of types such that µ(θ̃) = c′′ 6= c0
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and µDA(θ̃) = c0. But this contradiction as µ(θ̃) �θ̃ µDA(θ̃) and all agents must weakly

prefer their assignment under µDA to their assignment under µ.
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B Additional Results for the Example (Section 2)

B.1 Formal Equivalence Between Prices vs. Quantities and Pri-

orities vs. Quotas

The structure of the comparative advantage of priorities over quotas from Section 2 hints

at a more formal relationship between our analysis of affirmative action policies and Weitz-

man’s analysis of price and quantity regulation. In Weitzman’s model, there is a single firm

producing a quantity of a single good x ∈ R with production costs C(x, ζ) and benefits

B(x, ζ ′):

C(x, ζ) = a0(ζ) + (C ′ + a1(ζ))(x− x̂) +
C ′′

2
(x− x̂)2

B(x, ζ ′) = b0(ζ ′) + (B′ + b1(ζ ′))(x− x̂) +
B′′

2
(x− x̂)2

(89)

where B′, C ′, C ′′ > 0, B′′ < 0, and ζ and ζ ′ are random variables. The regulator can either

set a price that the firm must charge (after which the firm chooses its optimal production

quantity) or mandate the production of a given quantity. The comparative advantage of

prices over quantities ∆Weitzman is then defined as the difference between expected benefits

net of costs under the optimal price regime minus the corresponding net benefits under the

optimal quantity regime. This comparative advantage is given by:

∆Weitzman =
C ′′−1

2

(
1 + C ′′−1B′′

)
Var[a1(ζ)] (90)

The intuition for this formula is that when benefits are more curved than costs |B′′| >
C ′′, reducing variability in production is more valuable than the gain of having producers

minimize costs. Thus, quantities are preferred. On the other hand, when costs are more

curved than benefits, prices are preferred as there is greater production when producers have

the lowest marginal costs of production.

These trade-offs are, in a certain sense, formally analogous to those that we have high-

lighted between priorities and quotas. In particular, under the mapping C ′′−1 7→ κ, B′′ 7→
−γβ, Var[ω] 7→ Var[a1(ζ)], we have that ∆Weitzman = ∆. The intuition for this is that C ′′−1

in the Weitzman framework determines how sensitive production is to changes in marginal

cost, while κ in our framework determines how sensitive the admitted measure of minority

students is to the relative scores. Moreover, B′′ corresponds to curvature in the benefits of

production while γβ corresponds to curvature in the benefits of admitting more minority stu-

dents. Finally, Var[a1(ζ)] corresponds to the authority’s uncertainty in the level of marginal

costs of production while Var[ω] corresponds to the authority’s uncertainty regarding the
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marginal cost of admitting more minority students in terms of lost total score. Thus, the

positive selection effect whereby priorities admit more minority students in the states of the

world where they score highest is directly analogous to the effect that price regulation gives

rise to the greatest production in states where the firm’s marginal cost is lowest. Moreover,

the guarantee effect whereby quotas prevent variation in the measure of admitted minority

students across states of the world is analogous to the ability of quantity regulation to stabi-

lize the level of production. Importantly, our results therefore allow one to apply established

price-theoretic intuition for the benefits of price vs quantity choice to matching markets

without an explicit price mechanism.

B.2 Beyond Affirmative Action: Medical Resource Allocation

The lessons of this paper apply not only to affirmative action in academic admissions, but

also more broadly to settings in which centralized authorities must allocate resources to

various groups. One prominent such context is the allocation of medical resources during

the Covid-19 pandemic. An important issue faced by hospitals is how to prioritize health

workers (doctors, nurses and other staff) in the receipt of scarce medical resources: hospitals

wish to both treat patients according to clinical need and ensure the health of the frontline

workers needed to fight the pandemic. To map this setting to our example, suppose that the

score s is an index of clinical need for a scarce medical resource available in amount q, the

measure of frontline health workers is κ, and ω indexes the level of clinical need in the patients

currently (or soon to be) treated by the hospital, which is unknown. The risk aversion of the

authority γβ corresponds to both a fear of not treating sufficiently many frontline workers

and excluding too many clinically needy members of the general population.

In practice, both priority systems and quota policies have been used, as detailed exten-

sively by Pathak, Sönmez, Unver, and Yenmez (2021).40 The primary concern that has been

voiced is that if a priority system is used, some groups (or characteristics) may be completely

shut out of allocation of the scarce resource and that this is unethical, so quotas should be

preferred. Our framework can be used to understand this argument: if there is an unusually

high draw of ω, a priority system would lead to the allocation of very few resources to front-

line workers, and vice-versa. Our Proposition 1 implies that if the authority is very averse to

such outcomes (γβ is high), quotas will be preferred and for exactly the reasons suggested.

However, we also highlight a fundamental benefit of priority systems in inducing positive

selection in allocation: when ω is high, it is beneficial that fewer resources go to the less

sick medical workers and more to the relatively sicker general population. More generally,

40Some other papers that study the allocation of scarce medical resources are Akbarpour, Budish, Dwor-
czak, and Kominers (2021), Grigoryan (2021) and Dur, Thayer, and Phan (2022).
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we argue that an adaptive priority mechanism that awards frontline workers a score subsidy

that depends on the number of more clinically needy frontline workers could further improve

outcomes.

An important additional consideration in this context arises if the hospital or authority

must select a regime (priorities or quotas) before it understands the clinical need of its

frontline workers κ, after which it can decide exactly how to prioritize these workers or

set quotas, but before ultimate demand for medical resources ω is known. It follows from

Proposition 1 that the comparative advantage of priorities over quotas is:

E[∆] =
1

2

(
E[κ]− (Var[κ] + E2[κ])γβ

)
Var[ω] (91)

Thus, an increase in uncertainty Var[κ] regarding the need of frontline workers leads to a

greater preference for quotas. This highlights a further advantage of quotas in settings where

a clinical framework must be adopted in the face of uncertainty regarding the clinical needs

of frontline workers, as was the case at the onset of the Covid-19 pandemic.

B.3 Optimal Precedence Orders

Thus far we have modelled quotas by first allocating minority students to quota slots and

then allocating all remaining students according to the underlying score. However, we could

have instead allocated q − Q places to all agents according to the underlying score and

then allocated the remaining Q places to minority students. The order in which quotas

are processed is called the precedence order in the matching literature and their importance

for driving outcomes has been the subject of a growing literature (see e.g., Dur, Komin-

ers, Pathak, and Sönmez, 2018; Dur, Pathak, and Sönmez, 2020; Pathak, Rees-Jones, and

Sönmez, 2022). Our framework can be used to understand which precedence order is optimal,

a question that has not yet been addressed.

In this example, the same factors that determine whether one should prefer priorities

or quotas determine whether one should prefer processing quotas second or first. By virtue

of uniformity of scores, it can be shown in the relevant parameter range that a priority

subsidy of α is equivalent to a quota policy of κα when quotas are processed second. Thus,

the comparative advantage of priorities over quotas is exactly equal to the comparative

advantage of processing quotas second over first. The intuition is analogous: processing

quotas second allows for positive selection while processing quotas first fixes the number of

admitted minority students. Thus, on the one hand, when the authority is more risk-averse,

they should process quota slots first to reduce the variability in the admitted measure of

minority students. On the other hand, when they are less risk-averse, they should process

quotas second to take advantage of the positive selection effect such policies induce.
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Corollary 1. The optimal quota-second policy achieves the same value as the optimal pri-

ority policy; quota-second policies are preferred to quota-first policies if and only if 1
κ
≥ γβ.

Proof. We show that a quota-second policy Q is equivalent to a priority subsidy of α(Q) = Q
κ

.

A quota-second policy admits the highest-scoring x = κ(1−ω)+Q minority students, floored

by zero and capped by min{κ, q}. A priority policy α(Q) = Q
κ

admits the highest-scoring

x = κ(1 + α(Q) − ω) = κ(1 − ω) + Q minority students, floored by zero and capped by

min{κ, q}. Thus, state-by-state, quota-second policy Q and priority subsidy α(Q) = Q
κ

yield

the same allocation. The claims then follow from Proposition 1.

We emphasize that this equivalence is a result of the uniform distribution of scores and

merely illustrates the similarity between priority policies and processing quotas second. This

result does not hold in the more general model we study in the remainder of the paper.

Indeed, in Theorem 2, we show that for any quota policy to be optimal in the presence of

uncertainty, it must process quotas first.

66



C Additional Quantitative Results

In this Appendix, we describe both the methodology and results of the two robustness exer-

cises that are not discussed in full detail in the main text. First, we estimate the gains from

APM when we assume that CPS sets one tier size for all tiers rather than separately opti-

mizing the sizes of the four tiers. Second, we estimate the gains from APM under alternative

utility functions that differentially penalize underrepresentation and overrepresentation.

C.1 Estimation with Homogeneous Reserves

As we have motivated, in this section we estimate an alternative model, where CPS chooses

a single reserve size, r, instead of separate reserve sizes for all tiers. Formally, we replace the

vector of reserve sizes of the four socioeconomic tiers, r = (r1, r2, r3, r4) by r = (r, r, r, r). In

this setting, we define the marginal benefit of increasing reserve size as

G(r,Λ; β, γ) =
∂

∂r
Ξ(r,Λ; β, γ) (92)

As in the general model, any (interior) reserve policy r∗ must satisfy G(r̂∗, Λ̂; β, γ) = 0.

This first-order condition yields one moment, and so we can estimate one parameter. To

this end, we fix γ, and for each γ ∈ [1, 10], and we estimate β∗(γ) as the exact solution to

the following empirical moment condition:

G(r̂∗, Λ̂; β∗(γ), γ) = 0 (93)

Figure 7 plots the logarithm of the estimated β∗(γ). The estimated β∗(γ) is increasing

in γ. As the loss term |xt − 0.25| is in (0, 1), β∗(γ) is increasing and convex in γ, where

β∗(1) = 34 and β∗(10) = 1.436 × 108. In Figure 8, we plot the gains as a function of γ,

which shows that even though the estimated value for β moves quite a lot, the empirical

gains range from 2 to 4 points. This also shows that the estimated gain from APM of 2.1

under our benchmark specification is close to the lower bound of the estimated gains under

the alternative specification with homogeneous reserves.

Finally, we benchmark these gains as a fraction of loss from underrepresentation under

the CPS policy, where the loss of underrepresentation is calculated under the estimated

parameter values. In Figure 9, we plot the gains under APM as a percentage of diversity

loss under the CPS policy. These range from 26% to 300%. Our baseline percentage gain

estimate of 37.5% is again close to the lower bound that we estimate under the alternative

specification with homogeneous reserves.
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Figure 7: Estimated Slope of Utility Under Homogeneous Reserves
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Note: This graph plots the estimated logarithm of the slope of utility log β∗(γ) in the homogeneous
reserve case as we vary the curvature of utility γ ∈ [1, 10].

Figure 8: Payoff Gains from APM Under Homogeneous Reserves
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Note: This graph plots the estimated difference in payoffs in the homogeneous reserves case between
the optimal APM and the CPS policy as we vary the curvature of utility γ ∈ [1, 10].

68



Figure 9: The Gains from APM as a Fraction of the Loss From Underrepresentation Under
Homogeneous Reserves
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Note: This graph plots the estimated difference between the payoffs under the optimal APM under
homogeneous reserves as a fraction of loss from underrepresentation as we vary the curvature of
utility γ ∈ [1, 10].

C.2 Gains from APM Under Different Utility Functions

In this section, as we have motivated, we estimate alternative objective functions to investi-

gate the robustness of our findings.

First, we analyze a setting that includes a loss term only for underrepresented tiers (and

does not penalize overrepresentation of any tier). To this end, we replace the term |0.25−xt|
with min{0, (0.25 − xt)} and perform the same estimation with the following parametric

utility function:

ξ(s̄, x; β, γ) = s̄+ β
4∑
t=1

(min{0, (0.25− xt)})γ (94)

The estimated parameter values are β∗ = −52058 and γ∗ = 3.87467. We compute the

difference between the empirical payoffs under APM and the CPS reserve policy to be 0.262,

which is significantly lower than our estimate of 2.1. However, the reason for this is that the

diversity domain is estimated to be less important under this specification, and the diversity

loss under the CPS policy is 2.71. Thus, improvements from APM correspond to 9.6% of

the loss from underrepresentation, which is attenuated relative to our baseline specification,

but remains non-negligible.

Second, we allow CPS to care differentially about underrepresentation and overrepresen-
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tation by considering a utility function with separate coefficients for underrepresented and

overrepresented tiers. To this end, we define the following loss function:

f(xt, βl, βh, γ) =

βl(0.25− xt)γ if xt ≤ 0.25

βh(xt − 0.25)γ if xt > 0.25
(95)

where βl indexes the loss from underrepresentation of a tier, while βh indexes the loss from

overrepresentation. We then perform the same estimation with the following parametric

utility function:

ξ(s̄, x; β, γ) = s̄+
4∑
t=1

f(xt, βl, βh, γ) (96)

This yields the following estimated values: β∗l = −1362270, β∗h = −12278, γ∗ = 5.28021.

We compute the difference between the empirical payoffs under APM and the CPS reserve

policy to be 0.195 and the loss from underrepresentation under the CPS policy to be 2.24.

Thus, we conclude that improvement from APM corresponds to 8.7% of loss from underrep-

resentation under the CPS policy, which is similar to what we obtain under the specification

in which there is no loss from overrepresentation.
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D Extension to More General Authority Preferences

In this Appendix, we relax Assumption 1 to allow for (i) non-separable diversity preferences,

(ii) non-separable score and diversity preferences, (iii) non-differentiable preferences, and

(iv) non-concave diversity preferences. We show how these changes in assumptions lead to

certain modified APM mechanisms becoming first-best optimal.

D.1 Non-Separable Diversity Preferences

First, we relax Assumption 1 and instead suppose that the authority’s preferences satisfy

the following assumption:

Assumption 2. The authority’s utility function can be represented as:

ξ (s̄h, x) ≡ g (s̄h + u(x)) (97)

for some continuous, strictly increasing function g : R → R and a concave, partially differ-

entiable u in each argument.

In this environment, we define a non-separable APM Ã = {Ãm}m∈M where Ãm : R|M| ×
[0, 1]→ R. This implements allocation µ in state ω as per Definition 2 (under the modifica-

tion of point 1 in Definition 2 to allow Am to depend on x rather than just xm).

We generalize Theorem 1 to show that the following non-separable APM uniquely imple-

ments the first-best optimal allocation:

Proposition 5. The non-separable APM Ã∗m(y, s) ≡ h−1(h(s) + u(m)(y)) and uniquely im-

plements the first-best optimal allocation.41

Proof. Follow every step in the proof of Theorem 1 with
∑

m∈M um(xm) replaced by u(x)

and u′m(xm) replaced by u(m)(x).

Thus, allowing for non-separable diversity preferences does not substantially change the

analysis of adaptive priority mechanisms. One must simply adapt the APM to be non-

separable to allow cross-group diversity concerns to shape the marginal benefits of admitting

agents from various groups. The main difference is that this a non-separable APM does not

necessarily allow the simple implementation of Algorithm 1. This is because, in the presence

of cross-group adaptive priorities, it is no longer enough to rank agents within their own

group. A small adaptation to this algorithm that dynamically admits agents, starting from

the highest-scoring agents in each group, would naturally implement the unique first-best

optimal allocation.

41Where we define u(m)(y) = ∂
∂ym

u(y).
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D.2 Non-Separable Score and Diversity Preferences

Second, we relax Assumption 1 and instead suppose that the authority’s preferences are

represented by:

Assumption 3. The authority’s Bernoulli utility function can be represented as:

ξ (s̄h, x) (98)

where ξ is monotone, differentiable, and concave.

We define a state-dependent APM Â = {Âm}m∈M where Âm : R|M| × [0, 1] × Ω → R.

This implements allocation µ in state ω as per Definition 2 (where point 1 in Definition 2 is

modified to allow Am to depend on both x and ω).

In this more general setting, we now find a state-dependent APM that implements the

optimal allocation.

Proposition 6. The following state-dependent APM implements a first-best optimal alloca-

tion:

Am(y, s, ω) ≡ h−1

(
h(s) +

ξxm (s̄h(y, ω), y)

ξs̄h (s̄h(y, ω), y)

)
(99)

where s̄h(y, ω) is the score index in state ω when the highest-scoring y = {ym}m∈M agents

of each attribute are allocated.

Proof. Follow every step in Theorem 1 with
∑

m∈M
∫ h(1)

s̃m(xm)
s̃f̃m(s̃)ds̃ +

∑
m∈M um(xm) re-

placed with ξ (s̄h(y, ω), x) where s̄h(y, ω) =
∑

m∈M
∫ h(1)

s̃m(xm)
s̃f̃m,ω(s̃)ds̃.

There are two substantial differences in this optimal policy from our baseline APM. First,

the policy depends on the joint distribution of agents in the population. Thus, specifying

it ex ante is likely to be extremely challenging in any practical setting. This is necessary

because the marginal rate of substitution between diversity and scores depends on the level

of scores, which depends on the distribution of agents. Second, without assumptions on the

shape of the distribution of agents, there is no guarantee that this policy is monotone and

thus no guarantee that it implements a unique policy.

Thus, while Proposition 5 showed that cross-group separability is largely inessential for

our main conclusions, separability between score and diversity preferences is key to the power

of APM.

D.3 Non-Differentiable Preferences

In this section, we retain the majority of Assumption 1, where we instead suppose that the

authority’s diversity preferences {um}m∈M are potentially non-differentiable at finitely many
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points.

As um is concave, the left and right derivatives of um, u−m and u+
m, exist. The definition

of our first-best APM is not applicable to this case since u′m might not exist. Therefore, we

define the following generalized optimal APM A∗m(ym, s) ≡ h−1(h(s)+u−m(ym)), which simply

replaces u′m with u−m in the definition. By concavity of um, u−m is monotone decreasing. Thus,

this generalized optimal APM (as it is a montone APM) implements a unique allocation by

Proposition 2. Moreover, the unique allocation that it implements is an optimal allocation:

Proposition 7. Let µ∗ denote the allocation implemented by the generalized optimal APM.

µ∗ is an optimal allocation.

Proof. We first prove a claim. An allocation in this setting is a cutoff allocation if there

exists cutoffs {sm}m∈M such that an agent θ is assigned the resource if and only if s(θ) ≥ sm

and m(θ) = m.

Claim 16. There exists a unique optimal allocation µ′ in the sense that all other allocations

that attain the optimal payoff differ from µ′ on at most a measure zero set of types. Moreover,

there exists an optimal allocation that is a cutoff allocation.

Proof. In the setting of Theorem 1, observe that s̃m(xm) is strictly decreasing in xm. This,

together with the concavity of u implies that the objective is strictly concave and constraints

are linear. Therefore an optimal allocation exists and is unique up to measure zero trans-

formations. Given this allocation µ′ (with measures xm), an optimal cutoff allocation is

obtained by the cutoff scores s∗m that satisfy

s′m = sup

{
sm ∈ [0, 1] :

∫ 1

sm

f̃m(s̃)ds̃ = xm

}
(100)

Using this claim, toward a contradiction, assume there exists another allocation µ′, which

gives the authority a strictly higher utility. Moreover, take µ′ to be an optimal cutoff alloca-

tion (which must exist by the claim). As µ′ differs from µ∗ and both are cutoff allocations,

we have that there exist two groups m,n ∈M such that: (i) s′m > s∗m and x′m < x∗m and (ii)

s′n < s∗n and x′n > x∗m. We have that:

A∗m(x, s) ≥ A∗m(x∗m, s) > A∗m(x∗m, s
∗
m) ≥ A∗n(x∗n, ŝ) ≥ A∗n(x̂, ŝ) (101)

for all s ∈ (s∗m, s
′
m), ŝ ∈ (s′n, s

∗
n), x ≤ x∗m, x̂ ≥ x∗n. The first inequality follows by concavity

of um, the second follows by the fact that h is strictly increasing, the third follows by the

definition of APM and the fact that µ∗(s∗m,m) = 1 and µ∗(ŝ, n) = 0, and the fourth follows

73



from concavity of un. Thus, we have that, for all s ∈ (s∗m, s
′
m), ŝ ∈ (s′n, s

∗
n), x ≤ x∗m, x̂ ≥ x∗n:

u−m(x) + h(s) > u−n (x̂) + h(ŝ) (102)

Thus, the total marginal utility obtained by replacing any positive measure type m agents

with scores s ∈ (s∗m, s
′
m) with an identical measure of type n agents with scores ŝ ∈ (s′n, s

∗
n)

is positive. But this contradicts the optimality of µ′. Thus, if µ̃ is optimal, then µ̃ = µ∗ (up

to a measure zero set).

D.4 Non-Concave Preferences

In this section, we relax the assumption that the um are concave.

Proposition 8. If µ is an optimal allocation, then µ is implemented by A∗.

Proof. Without concavity, the optimal allocation characterized in the proof of Theorem 1 is

no longer unique. However, the Lagrangian conditions we have derived are still necessary

for any optimal allocation x = {xm}m∈M. Thus, any optimal allocation is implemented by

A∗.

This result shows that any optimal allocation is implemented by the optimal APM.

However, when {um}m∈M are not concave, A∗ is not necessarily monotone. Therefore, A∗

does not necessarily implement a unique allocation. Indeed, it is possible that A∗ implements

suboptimal allocations, as it will implement any locally optimal allocation. Therefore, a

mechanism defined by an arbitrary selection from the allocations implemented by A∗ would

not be first-best optimal. However, A∗ may still help decision-making in this setting as it

implements any optimal allocation.
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E APM Are Dominant Under Decentralized Admis-

sions

In this Appendix, we study which mechanisms are optimal under decentralized admissions.

We consider a setting in which the agents apply sequentially to the authorities, who then

decide which agents to admit. We index the stage of the game by t ∈ T = {1, . . . , |C| − 1}.
Each stage corresponds to a (non-dummy) authority I(t), where I : T → T . At each

stage t, any unmatched agents choose whether to apply to authority I(t). Given the set of

applicants, authority I(t) chooses to admit a subset of these agents, who are then matched

to the authority. Given this, histories are indexed by the path of the measure of agents who

have not yet matched, ht−1 = (F, F1, . . . , Ft−1) ∈ Ht−1. Given each history ht−1 and set of

applicants ΘA
c ⊆ Θ, a strategy for an authority returns a set of agents ΘG

c ⊆ Θ whom they

will admit such that ΘG
c ⊆ ΘA

c and Ft(Θ
G
c ) ≤ qc for each time at which they could move

t ∈ T , ac,t : Ht−1 ×P(Θ)→ P(Θ), where P(Θ) is the power set over Θ.42 A strategy for an

agent returns a choice of whether to apply to authorities at each history and time t ∈ T for

all agent types θ ∈ Θ, σθ,t : Ht−1 → [0, 1].

Within this context, our notion of equilibrium is that of subgame perfect equilibrium:

Definition 7 (Equilibrium). A strategy profile Σ = {{ac,t}c∈C̄, {σθ,t}θ∈Θ}t∈T is a subgame

perfect equilibrium if ac,t maximizes authority utility given Σ for all c ∈ C̄ and t ∈ T and σθ,t

is maximal according to agent preferences for all θ ∈ Θ and t ∈ T .

We moreover say that a strategy ac̃,t for an authority c̃ at time t is dominant if it

maximizes authority utility regardless of the strategies of all other authorities and agents,

{{ac,t}c∈C̄\{c̃}, {σθ,t}θ∈Θ}t∈T , and the order in which authorities admit agents, I. Moreover, an

equilibrium Σ is in dominant strategies if ac,t is dominant for all c ∈ C̄ and t ∈ T . We denote

the unique probabilistic allocation of agents to authorities induced by Σ as µΣ : Θ→ ∆(C).
A probabilistic allocation µΣ is deterministic if µΣ(θ) is a Dirac measure on some authority

c ∈ C for all θ ∈ Θ. A deterministic allocation µΣ corresponds to a matching µ if µΣ(θ) is a

Dirac measure on µ(θ) for all θ ∈ Θ.

We now establish that the single-authority optimal APM characterizes dominance.

Theorem 5. A mechanism implements a dominant strategy for an authority if and only if

it implements essentially the same allocations as A∗c.

42Formally, so that Ft(Θ
G
c ) is well defined, we require that authorities’ strategies be measurable in the

Borel sigma algebra over Θ.
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Proof. We prove that APM A∗c implements a dominant strategy by backward induction.

Consider the terminal time t = |C| − 1. Some measure of agents λ applies to the authority.

Regardless of the measure λ, by Theorem 1 we have that the APM A∗c is first-best optimal

(to see this more concretely, simply index λ by an arbitrary ω ∈ Ω and apply Theorem 1).

Thus, A∗c is dominant. Moreover, from Theorem 1, any strategy that differs from A∗c on a

strictly positive measure set cannot be optimal. Thus any dominant strategy implements

essentially the same allocation as A∗c . Consider now any time t < |C| − 1, precisely the same

argument applies and A∗c is (essentially uniquely) dominant.

The intuition behind this result is that each authority takes as given the set of agents

that will accept it. Thus, given this measure of agents, they can do no better than to employ

the same APM that a single authority would, which is A∗c by Theorem 1.

Theorem 5 provides a powerful rationale for focusing on APMs in decentralized markets

at both positive and normative levels. Normatively, this result allows an analyst to advise

an authority regarding how it should conduct its admissions. This is important because

any policy that does not coincide with the APM we derive — such as the popular priority

and quota mechanisms outside of the cases delimited by Theorem 2 — will disadvantage

an authority. Positively, this result allows a sharp prediction that the equilibrium matching

between agents and authorities will be the unique stable matching (as per Theorem 3):

Proposition 9. For all equilibria Σ∗ where authorities use A∗, the allocation µΣ∗ is deter-

ministic and corresponds to the unique stable matching of this economy.

Proof. We first prove the following claim.

Claim 17. µΣ∗ is (almost surely) a deterministic allocation that corresponds to a cutoff

matching µ∗.

Proof. Since there is a continuum of agents, under any Σ∗, with probability 1, any authority

c faces a given set of agents who apply ΘA,Σ∗
c with induced measure λΣ∗

c . As c uses APM

A∗c , with probability 1, any agent θ is admitted to an authority if and only if sc(θ) ≥ SΣ∗
m,c,

where SΣ∗
m,c denotes the cutoffs when APM A∗c is applied to agent measure λΣ∗

c . Since the

agents have strict preferences, in any equilibrium, each agent applies to the �θ −maximal

authority in {c : sc(θ) ≥ SΣ∗
m,c}, and is admitted, which establishes that µΣ∗ is (almost surely)

deterministic allocation that corresponds to a cutoff matching with cutoffs SΣ∗
m,c.

We now establish that µΣ∗ is the unique stable matching of the economy.

Claim 18. µ∗ is the unique stable matching of this economy.
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Proof. For a contradiction, assume µΣ∗ is not stable. Let S denote the unique cutoffs associ-

ated with µΣ∗ . Since µΣ∗ is not stable, by Claim 9, S is not a fixed point of T . Let tc = Tc(S).

Since S is not a fixed point of T , there exists m ∈M and c ∈ C such that tm,c 6= Sm,c. More-

over, let {xtm,c}m∈M and {xsm,c}m∈M denote the measure of agents in D̃c(S−c) who are above

the admission thresholds for authority c under tc and Sc. As in Claim 10, note that if there

exists m, c such that tm,c > Sm,c, then from full support, we have that xsm,c > xtm,c. Since the

authority fills its capacity in both cases, there must exists m′ such that xtm′,c > xsm′,c which is

only possible if Sm,c > tm,c. By an identical argument, if there is m, c such that tm,c < Sm,c,

then there exists m′ Sm′,c < tm′,c. Therefore, whenever tm,c 6= Sm,c, there exists c and m,m′

such that tm,c > Sm,c and Sm′,c > tm′,c. But now we have shown the following:

hc(Sc,m′) + um′(x
s
c,m′) > hc(tc,m′) + um′(x

t
c,m′) ≥ hc(tc,m) + um(xtc,m) > hc(Sc,m) + um(xsc,m)

where the first inequality follows by tc,m′ < Sc,m′ , x
s
c,m′ < xtc,m′ , and concavity of um. The

second inequality follows by optimality. This is because the facts that tc,m > 0 and t′c,m′ < 1

imply that the Lagrange multipliers in the proof of Theorem 1 κm = κm′ = 0 . The final

inequality follows since tm,c > Sm,c and xtm,c < xsm,c. However, this is a contradiction since

hc(Sc,m′) + um′(x
s
c,m′) > hc(Sc,m) + um(xsc,m) implies that there exists ε > 0, an agent θ with

score sc(θ) = Sc,m′ − ε and type m(θ) = m has higher score under A∗ than the agent θ′ with

score sc(θ
′) = Sc,m and type m(θ′) = m. Since θ′ is admitted to c, θ would be if it applied

to c. Moreover, from full support, there is such θ whose top choice is c and the strategy of

this agent is not a best response, which is a contradiction.

The combination of Claims 17 and 18 completes the proof.

The intuition is that if an equilibrium matching under A∗ was not the unique stable

matching, then it must be that some agents are applying suboptimally and failing to select

the most preferred authority that they can attend, which contradicts that the outcome is

consistent with equilibrium. Proposition 9 also shows that the allocation implemented in

the dominant strategy equilibrium is the same for all possible orderings of authorities, I.
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F Efficient Mechanisms with Multiple Authorities

We have characterized stability and the decentralized outcome (and shown that they are

the same), but two natural questions remain. First, is the stable outcome efficient for the

authorities?43 Second, if not, what kind of centralized solution can remedy any inefficiency?

We show that the stable outcome is generally inefficient and that a modified, centralized

APM mechanism restores efficiency.

F.1 Inefficiency of the Decentralized Outcome

The notion of efficiency that we will consider is utilitarian efficiency over authorities. A

mechanism in the multi-authority setting is a function φ : Ω → U , where U is the set of

matchings (which, by definition, encodes the feasibility requirement imposed in the single au-

thority setting). We define the total authority value ΞT of a mechanism φ under distribution

Λ ∈ ∆(Ω) as the total expected utility of the allocations induced by that mechanism:

ΞT (φ,Λ) =
∑
c∈C̄

Ξc(φ,Λ) (103)

A mechanism is efficient if it maximizes total authority value for all possible distributions:

Definition 8 (Efficiency). A mechanism φ∗ is efficient if:

ΞT (φ∗,Λ) = sup
φ

ΞT (φ,Λ) (104)

for all Λ ∈ ∆(Ω).

For this section, so that scores are directly comparable across authorities and allocations

are interior, we impose the following assumption:

Assumption 4. Scores and preferences are such that sc(θ) = sc′(θ), hc = h and gc = Id,

where Id is the identity function, for all c, c′ ∈ C̄ and θ ∈ Θ. Moreover, limx→+0 u
′
m,c(x) =∞,

um,c is strictly concave for all m ∈M and c ∈ C̄, and for all θ ∈ Θ, c0 is less preferred than

c for all c ∈ C̄.

Assumption 4 makes scores a common numeraire across authorities and is akin to the

standard quasi-linearity assumption in mechanism design. For example, it may be suitable in

settings where the score is derived from a common index of academic attainment, such as in

Chicago Public Schools. This assumption does not impose that all authorities have common

marginal rates of substitution between scores and diversity, as they are allowed unrestricted

43We have shown that the decentralized outcome corresponds to the unique stable matching. Naturally,
stable allocations need not be efficient for the agents. Here, we will see if they are efficient for the authorities.
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heterogeneity in diversity preferences. We add the Inada condition for analytical tractability.

We argue that it is also reasonable to assume that failing to admit any individuals from a

given group is intolerable for authorities. We add that the outside option is ranked lower

than all authorities so that any agent is willing to be assigned to any of the authorities.

When authorities control highly desirable resources, such as elite school or university seats

or essential medical supplies, we argue that this is a reasonable assumption.

With the efficiency benchmark defined, we now demonstrate that the decentralized equi-

librium outcome can fail to be efficient. We prove this result via an explicit example with

two authorities, c and c′ of capacity 1
4
, and two groups of agents, m and m′ of measure 1

2
.

All agents in group m prefer c′ to c and all agents in group m′ prefer c to c′. Authority c

values admitting group m agents more on the margin than group m′ agents, and authority

c′ values admitting group m′ agents more on the margin than group m agents. Using the

optimal APMs, both authorities admit more agents of the group whose admissions they value

relatively less than the efficient benchmark. The intuition for this is that both authorities

“steal” the high-scoring agents of the group whom they relatively less value from the other

authority, an externality that they do not internalize.

Proposition 10 (Equilibrium Inefficiency). All authorities using the privately optimal APMs

{A∗c}c∈C is not necessarily efficient.

Proof. We prove the result by explicitly constructing an economy in which the optimal

APMs lead to inefficiency. There are two authorities, c and c′, both with capacity 1/2 and

two groups of agents, m and m′. Both agent groups have a measure of 1 and their scores are

uniformly distributed in [1/2, 1]. Authorities’ utility functions are given by

ξc (s̄h, x) ≡ s̄h +
1

4

√
xm +

1

8

√
xm′ (105)

ξc′ (s̄h, x) ≡ s̄h +
1

4

√
xm′ +

1

8

√
xm (106)

with h(x) ≡ x while all agents of type m prefer authority c′ to c while all agents of type m′

prefer authority c to c′.44

We will now derive the stable outcome of this economy, which is (up to measure zero

transformation) the unique outcome implemented when the authorities use the optimal APM.

Let xcm denote the measure of type m agents at authority c. First, note that higher-scoring

agents from the same group go to the more preferred authority. To see why this is true,

44This assumption on the preferences and the distribution of scores violate our full support assumption,
but adding an arbitrarily small full support density to all types makes arbitrarily small changes in the
utility under the stable matching and optimal allocation but complicates the calculation, so we omit it for
expositional clarity.
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note that if m(θ) = m(θ′) = m, s(θ) > s(θ′) and µ(θ) = c while µ(θ′) = c′, c and θ

would violate within group fairness since θ has higher priority at c than θ′ regardless of the

allocation. As a result, in any stable allocation µ, the highest-scoring xcm′ type m′ agents are

assigned to c and the next highest-scoring xc
′

m′ agents are assigned to authority c′, while rest

of the type m′ agents are not assigned to any authority. The allocation for type m agents is

analogous. Moreover, since q = 1/2 for both authorities, xc
′

m′=1/2-xcm′ and xcm=1/2-xc
′
m and

the allocation is completely determined by the measures xcm′ and xc
′
m.

Next, note that at µ, the adaptive priority of the lowest-scoring type m and m′ agents

must be equal at both authorities. To see why this is true, take authority c without loss

of generality. Let scm′ = 1 − xcm′ and scm = 1 − xcm′ − xcm denote the scores of the lowest-

scoring type m and m′ agents and Am denote the optimal APM. For a contradiction, assume

Am(xcm, s
c
m) > Am′(x

c
m′ , s

c
m′). Since agents of type m′ with scores lower than scm are unas-

signed at µ, for small enough ε, a type m agent with score scm − ε and authority c blocks

the matching. Similarly, assume Am(xcm, s
c
m) < Am′(x

c
m′ , s

c
m′). Since agents of type m′ with

scores lower than sc
′
m are assigned to authority c or unmatched at µ, a type m′ agent with

score scm′ − ε and authority c blocks the matching µ. Thus, the following equations must be

satisfied:

Am(xcm, s
c
m) = Am′(x

c
m′ , s

c
m′) and Am(xc

′

m, s
c′

m) = Am′(x
c′

m′ , s
c′

m′) (107)

As the optimal APM in this setting is given by:

A∗m̂,ĉ(ym̂, s) ≡ s+ u′m̂,ĉ(ym̂) (108)

for all m̂ ∈ {m,m′} and ĉ ∈ {c, c′}, we have that:

1− xcm′ +
1

8

1√
xcm′

= 1− xcm′ − xcm +
1

4

1√
1/2− xcm′

(109)

and:

1− xc′m +
1

8

1√
xc′m

= 1− xc′m − xc
′

m′ +
1

4

1√
1/2− xc′m

(110)

These equations are identical up to relabelling and so xcm′ = xc
′

m′ = x∗ for some x∗. Thus,

we need to find the solution to the following single equation to characterize the allocation:

1− x∗ +
1

8

1√
x∗

=
1

2
+

1

4

1√
1/2− x∗

(111)

Observe that this equation can be rewritten as the fixed point equation:

x∗ =
1

2
+

1

8

1√
x∗
− 1

4

1√
1/2− x∗

(112)

We observe that the RHS satisfies the following properties: (i) limx∗→0 RHS(x∗) = ∞, (ii)
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limx∗→ 1
2

RHS(x∗) = −∞, and (iii) RHS′(x∗) < 0 for all x∗ ∈ (0, 1
2
). Thus, there exists a

unique solution. Moreover, we can guess-and-verify that this solution is x∗ = 1
4
.

In summary, if both authorities use the optimal APM, then the outcome is

µ(θ) =


c if m(θ) = m, s(θ) ∈ [1/2, 3/4) or m(θ) = m′, s(θ) ∈ [3/4, 1]

c′ if m(θ) = m′, s(θ) ∈ [1/2, 3/4) or m(θ) = m, s(θ) ∈ [3/4, 1]

θ otherwise

(113)

In this outcome, both authorities have an average score of 3/4 and admit measure 1/4 agents

from both groups, giving them a utility of 15/16. Thus, total utilitarian welfare is 15/8 under

the decentralized outcome.

We now show that this does not attain the efficient benchmark. A necessary condition

for the (utilitarian) efficient outcome is that for c:

1

4

1
√
xcm

=
1

8

1√
1/2− xcm

(114)

and for c′:
1

4

1√
xc
′
m′

=
1

8

1√
1/2− xc′m′

(115)

This implies that xcm = xc
′

m′ = 4/10 and xcm′ = xc
′
m = 1/10. In this case, the same set of

agents is admitted overall, so the score contribution to utility remains 3/4 on average across

the authorities. Total utilitarian welfare is now:

3/2 + 1/2×
√

4/10 + 1/4×
√

1/10 ≈ 1.895 > 1.875 = 15/16 (116)

Completing the proof.

F.2 An Efficient Centralized Mechanism

The inefficiency of each authority using a decentralized APM stems from the implicit incom-

pleteness of markets: if we added the ability for authorities to pay each other for agents,

then they would have willingness-to-pay to do so at the equilibrium allocation. A central-

ized mechanism can remedy this issue by ensuring the cross-sectional allocation of agents to

authorities is optimal.

We propose the following augmentation of an APM to solve this problem, an adaptive

priority mechanism with quotas (APM-Q). The idea behind this hybrid mechanism is to use

aggregate, market-level priorities with authority-specific quotas. To this end, an APM-Q

comprises an aggregate non-separable APM Ã = {Ãm}m∈M with Ãm : R|M| × [0, 1] → R
and a profile of quota functions Q = {Qm,c}m,c∈M with with Qm,c : R|M| → R+. Intuitively,

the aggregate APM pins down the aggregate measures of allocations of each group to any
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authority {xm}m∈M, where xm =
∑

c∈C̄ xm,c. The non-separability of this APM simply

means that the measures of all groups matter for the adaptive priority of any agent. Given

the aggregate measure of allocation for group m, the quota function for authority c assigns

Qm,c({xm}m∈M) agents of type m to authority c.

Definition 9 (Adaptive Priority Mechanism with Quotas). An adaptive priority mechanism

with quotas (Ã, Q) comprises a non-separable APM Ã and a quota function Q. An APM-Q

implements allocation µ if the following are satisfied:

1. Aggregate allocations are in order or priorities: µ(θ) ∈ C̄ if and only if for all θ′ with

µ(θ′) = c0, we have that:

Ãm(θ)({xm(µ)}m∈M, s(θ)) > Ãm(θ′)({xm(µ)}m∈M, s(θ′)) (117)

2. Authority-level allocations are given by the corresponding quota functions:

xm,c(µ) = Qm,c({xm(µ)}m∈M) (118)

3. The resources are fully allocated: ∑
m∈M

xm,c(µ) = qc (119)

By appropriate choice of the APM and quota functions, we can derive an APM-Q that

is efficient. To this end, define the optimally-allocated aggregate utility from diversity:

ũ({xm}m∈M) = max
{xm,c}c∈C

∑
c∈C

∑
m∈M

um,c(xm,c)

s.t.
∑
c∈C

xm,c ≤ xm,
∑
m∈M

xm,c ≤ qc, ∀m ∈M, c ∈ C
(120)

Moreover, define the marginal value of aggregate group m admissions ũ(m)(y) = ∂
∂ym

ũ(y)

and the marginal value of authority capacity ũqc(y) = ∂
∂qc
ũ(y). Using these marginal values,

we can design an efficient APM-Q that combines market-level APMs with authority-level

quotas:

Theorem 6 (Efficient APM-Q). Every allocation induced by the following APM-Q (Ã, Q)

is efficient:

1. The non-separable APM is given by Ãm(y, s) = h−1
(
h(s) + ũ(m)(y)

)
2. The quota functions are given by Qm,c(y) =

(
u
′
m,c

)−1 (
ũ(m)(y) + ũqc(y)

)
Proof. First, we define a fictitious composite authority with utility function defined over

vectors of total scores s̄h = {s̄ch}c∈C, and aggregate allocation to each group x = {xm}m∈M.
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To do this, we define:

ũ({xm}m∈M) = max
{xm,c}c∈C

∑
c∈C

∑
m∈M

um,c(xm,c)

s.t.
∑
c∈C

xm,c ≤ xm,
∑
m∈M

xm,c ≤ qc, ∀m ∈M, c ∈ C
(121)

and ˜̄sh =
∑

c∈C s̄
c
h. We write the utility function of this composite authority as

ξ̃ (˜̄sh, x) = ˜̄sh + ũ(x) (122)

We first establish that ũ satisfies the properties necessary to invoke Proposition 5, which

establishes the optimality of the claimed APM for the fictitious authority.

Claim 19. The function ũ is concave and partially differentiable in each argument.

Proof. First, we establish concavity. That is, for all λ ∈ [0, 1] and x, x′ ∈ R|M|+ , we have that

ũ(λx′ + (1− λ)x) ≥ λũ(x′) + (1− λ)ũ(x). Let {x∗m,c}m∈M,c∈C and {x∗′m,c}m∈M,c∈C correspond

to optimal values under x and x′. Under x̃ = λx′+(1−λ)x, we have that λx∗
′
m,c+(1−λ)x∗m,c

is feasible for all m ∈M and c ∈ C. Thus, we have that:

ũ(x̃) ≥
∑
m∈M

∑
c∈C

um,c(λx
∗′
m,c + (1− λ)x∗m,c)

≥
∑
m∈M

∑
c∈C

λum,c(x
∗′
m,c) + (1− λ)um,c(x

∗
m,c)

= λũ(x′) + (1− λ)ũ(x)

(123)

where the second inequality is by concavity of um,c for all m ∈M, c ∈ C.
Second, we establish partial differentiability in each argument. That is, for all x ∈

R|M|++ , ∂
∂xm

ũ(x) = ũ(m)(x) exists. This follows by Corollary 5 in Milgrom and Segal (2002).

Concretely, the domain of optimization can be taken to be a compact and convex subset of

a normed vector space – a sufficiently large cube in R|M|×|C|+ equipped with the Euclidean

norm, for example. The objective function does not depend on x, and constraints are linear

in x (and therefore both continuous and continuously differentiable). Moreover, as x � 0,

there exists a {xm,c} that satisfies all constraints with strict inequality.

It follows that the objective function of the composite authority satisfies Assumption 2,

and so Proposition 5 implies that the non-separable APM Ãm(y, s) = h−1
(
h(s) + ũ(m)(y)

)
uniquely implements the first-best optimal allocation for the composite authority.

It remains to establish that the quota functions implement the optimal allocation {xm,c}
conditional on {xm}. Let λm be the Lagrange multiplier on the xm constraint, γc be the

Lagrange multiplier on the qc constraint and κm,c be the Lagrange multiplier on the positivity
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constraint. Under our maintained Inada condition, we have that κm,c = 0. Moreover, by

Corollary 5 in Milgrom and Segal (2002), we have that ũ(m)(x) = λm, ũqc(x) = γc, and

u′m,c(x
∗
m,c) = λm + γc − κm,c. Hence, we obtain that:

x∗m,c =
(
u
′

m,c

)−1 (
ũ(m)(x) + ũqc(x)

)
(124)

Thus, the following profile of quota functions implements the optimal cross-sectional alloca-

tion:

Qm,c(x) =
(
u
′

m,c

)−1 (
ũ(m)(x) + ũqc(x)

)
(125)

Completing the proof.

The proof of this result constructs a fictitious aggregate authority in our single object

setting. The claimed APM is optimal for this aggregate authority by a non-separable adap-

tation of Theorem 1. The substantial step in this proof establishes that ũ is increasing,

concave, and differentiable by employing the restrictions provided by Assumption 4. Then,

given the allocation induced by this APM, we construct the quota function to optimally

allocate the level of aggregate admissions induced by the APM.

Intuitively, this mechanism remedies inefficiency by “completing markets.” There is

a common “market price” for each group given by Pm = ũ(m)(x) and an authority-level

“shadow price of admissions” Pc = ũqc(x). Authorities are allocated agents so that the

marginal benefit of additional agents equals the sum of the market price and shadow price

of admissions u′m,c(xm,c) = Pm + Pc. Hence, through the completion of markets, a central-

ized planner can allocate agents efficiently and internalize the externalities that prevented

efficiency under the decentralized outcome. Notice that this market involves relatively few

prices as it involves only |M|+|C| shadow prices rather than the full set of |M|×|C| marginal

values.
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G Extension of the Main Results to Discrete Economies

In this Appendix, we extend the results in the main text to discrete economies and thereby

establish that the core of our analysis generalizes from the continuum framework. Concretely,

we show that appropriate analogs of Theorems 1, 2, and 4 carry over to discrete economies.

Together, these establish the optimality of APM and characterize the (sub)-optimality of

priorities and quotas. However, as discrete economies do not necessarily admit a unique

stable matching (as is well known), the first part of Theorem 3 does not hold (uniqueness).

This notwithstanding, we demonstrate that agent-proposing DA, when combined with the

optimal APM, implements the agent-optimal stable allocation.

G.1 Primitives

An authority has q resources to allocate. At each state ω, the economy the authority faces

corresponds to agents Θω = {θ1, . . . , θN(ω)} where q ≤ |N(ω)|. As in the continuum case,

θ ∈ [0, 1] ×M denotes the type of an agent who has score s and belongs to group m. We

denote the score and group of any type θ by s(θ) and m(θ), respectively. For simplicity, we

assume that no two agents have the same score at any ω, formally, if {θ, θ′} ⊆ Θω, then

s(θ) 6= s(θ′).

An allocation µ : Θ → {0, 1} specifies for any type θ ∈ Θ whether they are assigned to

the resource. The set of possible allocations is U and Ω is the set of all possible economies.

An allocation is feasible if it allocates no more than measure q of the resource. A mechanism

is a function φ : Ω→ U that returns a feasible allocation for any possible Θω.

The authority believes ω has distribution Λ ∈ ∆(Ω). x(µ, ω) = {xm(µ, ω)}m∈M denotes

the number of agents of each group allocated the resource at matching µ, while s̄h(µ, ω) =∑
θ∈Θω µ(θ)h(s(θ)) denotes the utility the authority derives from scores at µ. The preferences

of the authority are given by ξ : R|M|+1 → R:

ξ (s̄h, x) ≡ s̄h +
∑
m∈M

um(xm) (126)

where h is continuous and strictly increasing and um is concave for all m ∈M.

G.2 Optimal Mechanisms in Discrete Economies

We adapt our definition of the Adaptive Priority Mechanisms to the discrete setting. An

adaptive priority policy A = {Am}m∈M, where Am : R × [0, 1] → R. The adaptive priority

policy assigns priority Am(ym, s) to an agent with score s in group m when ym of agents of the

same group is allocated the object. Given an adaptive priority policy, an APM implements
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allocations in the following way:

Definition 10 (Adaptive Priority Mechanism). An adaptive priority mechanism, induced by

an adaptive priority A, implements an allocation µ in state ω if the following are satisfied:

1. Allocations are in order of priorities: µ(θ) = 1 if and only if

(i) for all θ′ with m(θ′) 6= m(θ) and µ(θ′) = 0,

Am(θ)(xm(θ)(µ, ω), s(θ)) ≥ Am(θ′)(xm(θ′)(µ, ω) + 1, s(θ′)) (127)

(ii) for all θ′ with m(θ′) = m(θ) and µ(θ′) = 0, s(θ) > s(θ′)

2. The resource is fully allocated: ∑
m∈M

xm(µ, ω) = q (128)

Definition 10 makes two modifications relative to the continuum model. First, the mea-

sures of agents from each group are replaced by the number of agents from each group.

Second, when m(θ) 6= m(θ′), the adaptive priority of θ′ is now evaluated in the case where

an extra agent from m(θ′) is assigned the resource.45 Unlike the continuum case, it is possible

for a monotone APM to implement two different allocations, since it can assign the same

priority to two different agents, which could happen only for a zero-measure set of agents in

the continuum model.

Define A∗m(ym, s) ≡ h(s) + um(ym)− um(ym − 1), which will turn out to be the optimal

APM. We first show that A∗ is monotone, and all allocations that A∗ implements give the

authority the same utility.

Lemma 4. A∗ is monotone. Moreover, if A∗ implements µ and µ′ 6= µ in state ω, then

ξ(µ, ω) = ξ(µ′, ω).

Proof. Monotonicity is immediate from the definition of A∗ and concavity of um. Assume

that A∗ implements two different allocations, µ and µ′ at ω. Let xl and x′l denote the number

of group l ∈M agents assigned the resource at µ and µ′. Since A∗ is monotone and µ 6= µ′,

there are m and n such that xm > x′m and x′n > xn. Let θ̃l and θ̃′l denote the lowest-scoring

type l agent assigned the resource at µ and µ′, respectively. Similarly, let θ̂l and θ̂′l denote

the highest-scoring type l agents who is not assigned the resource at µ and µ′, respectively.

Let µ̃ denote the matching given by: µ̃(θ) = µ(θ) if θ 6∈ {θ̃m, θ̂′n}, µ̃(θ̃m) = 0 while µ(θ̂n) = 1.

µ̃ starts with µ, takes the resource away from the lowest-scoring group m agent who has it,

θ̃m, and allocates it to the highest-scoring group n agent who does not have it, θ̂n. Note

45This was not the case in the continuum model since all types of agents have measure 0 and therefore
replacing θ with θ′ has no effect the evaluation of diversity.
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that since A∗ is monotone, from xm > x′m and x′n > xn, under µ′, θ̂n is already allocated the

resource while θ̃m is not.

Claim 20. µ̃ is implemented under A∗ in state ω and ξ(µ, ω) = ξ(µ̃, ω).

Proof. Since A∗ implements µ and µ(θ̂n) = 0, we have that A∗m(s(θ̃m), xm) ≥ A∗n(s(θ̂n), xn +

1). Conversely, since A∗ also implements µ′ and µ′(θ̂′m) = 0, we have that A∗n(s(θ̃′n), x′n) ≥
A∗m(s(θ̂′m), x′m + 1). Moreover, since xm > x′m and x′n > xn, we have that s(θ̂′m) ≥ s(θ̃m) and

s(θ̂n) ≥ s(θ̃′n) . From this, it follows that:

A∗n(s(θ̂n), xn + 1) ≥ A∗n(s(θ̃′n), xn + 1) ≥ A∗n(s(θ̃′n), x′n)

≥ A∗m(s(θ̂′m), x′m + 1) ≥ A∗m(s(θ̂′m), xm) ≥ A∗m(s(θ̃m), xm)
(129)

where the first inequality holds as s(θ̂n) ≥ s(θ̃′n), the second inequality holds as x′n > xn

(which implies x′n ≥ xn+1) and A∗n is decreasing in its second argument, the third inequality

holds as A∗ also implements µ′ (as stated above), the fourth inequality holds as x′m < xm

(which implies x′m + 1 ≤ xm) and A∗n is decreasing in its second argument, and the fifth

inequality holds as s(θ̂′m) ≥ s(θ̃m). Thus, A∗m(s(θ̃m), xm) ≤ A∗n(s(θ̂n), xn + 1). This shows

that A∗m(s(θ̃m), xm) = A∗n(s(θ̂n), xn + 1), which implies that µ̃ is implemented under A∗ and

ξ(µ, ω) = ξ(µ̃, ω).

Note that Claim 20 shows that starting from a matching µ which is implemented by A∗,

taking away the object from a particular agent who does not have it in µ′ and allocating it

to a particular agent who has it in µ′, we arrive at another matching µ̃ that is implemented

under A∗ and gives the authority the same payoff. Therefore, starting from any µ that is

implemented by A∗ and repeating this construction (by replacing µ at step i with µ̃ at step

i−1) where at each step we take the resource from an agent who is not allocated the resource

at µ′ and assign it to an agent who is, in finitely many steps we arrive at µ′. Since the payoff

stays the same at each step, µ′ gives the authority the same payoff as µ.

Theorem 7. If µ is implemented by A∗, then µ is an optimal matching.

Proof. First, note that an optimal matching exists since the economy (and therefore the set

of matchings) is finite. We first show the following lemma.

Lemma 5. If µ is not implemented by A∗, then there exists µ′ that gives the authority a

strictly higher payoff.

Proof. If µ is not implemented by A∗, then there exists θ and θ′ such that µ(θ) = 0, µ(θ′) = 1

and either m(θ) = m(θ′) and s(θ) > s(θ′) or m(θ) 6= m(θ′) and

h(s(θ)) + um(θ)(xm(θ)(µ) + 1)− um(θ)(xm(θ)(µ)) >

h(s(θ′)) + um(θ′)(xm(θ′)(µ))− um(θ′)(xm(θ′)(µ)− 1)
(130)
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However, in both cases, a µ′ that allocates the resource to θ instead of θ′ (while not changing

any other agent’s matching) strictly improves the utility of the authority.

Lemma 5 proves that the optimal matching cannot be a matching that is not implemented

by A∗. Since the optimal matching exists, then it is implemented by A∗. From Lemma 4, all

matchings implemented by A∗ give the authority the same payoff, proving the result.

Note that Lemma 4 and Theorem 7 imply that any mechanism that is defined by an

arbitrary singleton selection from the set of matchings that A∗ implements would achieve an

optimal matching under any ω and therefore would be first-best optimal.

G.3 Priorities vs. Quotas in Discrete Economies

Now, we define Priority and Quota Mechanisms in the discrete model and extend our

(sub)optimality results to discrete economies.

A priority policy P : Θ→ [0, 1] awards an agent of type θ ∈ Θ a priority P (θ).

Definition 11 (Priority Mechanisms). A priority mechanism, induced by a priority policy

P , allocates the resource in order of priorities until measure q has been allocated, with ties

broken uniformly and at random.

A quota policy is given by (Q,D), whereQ = {Qm}m∈M andD :M∪{R} → {1, 2, . . . , |M|+
1} is a bijection. The vector Q reserves Qm objects for agents in group m, with residual

capacity QR = q−
∑

m∈MQm open to agents of all types. The bijection D (often called the

precedence order) determines the order in which the groups are processed.

Definition 12 (Quota Mechanisms). A quota mechanism, induced by a quota policy (Q,D),

proceeds by allocating QD−1(k) objects to agents from group D−1(k) (if there are sufficient

agents from this group) to the resource in ascending order of k, and in descending order of

score within each k. If there are insufficiently many agents of any group to fill the quota, the

residual capacity is allocated to a final round in which all agents are eligible.

We also extend the definitions of risk-neutrality and high risk aversion to the discrete

setting. Authority preferences are non-trivial if for all m,n ∈M:

h(1) + (un(1)− un(0)) > h(0) + (um(q)− um(q − 1)) (131)

The authority is risk-neutral if for all m ∈M, um(x) = cmx for some cm ≥ 0 and all x ∈
{0, 1, . . . , q}. Define ũ and h̃ as follows: there exists xtar

m such that ũm(xm+1)−ũm(xm) = 0 for

all xm ≥ xtar
m and ũm(xm+1)−ũm(xm) ≥ h(1)−h(0) for xm < xtar

m and where
∑

m∈M xtar
m ≤ q.

Let ξ̃ denote the preferences of the authority under ũ and h̃. The authority with preferences

ξ is extremely risk-averse if the set of optimal allocations under ξ and ξ̃ coincide for all ω.
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Theorem 8. The following statements are true:

1. If there is no uncertainty, then there exist first-best priority and quota mechanisms.

2. Suppose that the authority has non-trivial preferences. There exists a first-best priority

mechanism if and only if the authority is risk-neutral. This mechanism is given by

P (s,m) = s+ um(1)− um(0).

3. Suppose that the authority has non-trivial preferences. There exists a first-best quota

mechanism if and only if the authority is extremely risk-averse. This mechanism is

given by Qm = xtarm and D(R) = |M|+ 1.

Proof. Part (1):

Claim 21. Let µ denote an optimal allocation at ω. Then µ is a cutoff matching.

Proof. If µ is not a cutoff matching, then there exists (s,m) and (s′,m) where µ(s,m) = 1,

µ(s′,m) = 0 and s′ > s. Define µ′ by setting: µ′(s,m) = 0, µ(s′,m) = 1 and µ(s̃, m̃) =

µ(s̃, m̃) for all (s̃, m̃) such that (s̃, m̃) 6∈ {(s,m), (s′,m)}. Observe that, ξ(µ′, ω)− ξ(µ, ω) =

s′ − s > 0. Therefore, µ is not an optimal allocation, which is a contradiction.

Let µ denote an optimal allocation under ω, {ŝm(µ, ω)}m∈M denote the cutoff scores at

µ and s∗ denote an arbitrary number. Any priority policy that assigns P (ŝm(ω),m) = s∗

for all m ∈ M and is strictly increasing in the first argument allocates the resource to any

agent who has a higher score than the cutoff for their group and implements the optimal

allocation.

Let xm denote the number of group m agents who are allocated the resource at an optimal

allocation under ω. Then a quota policy that sets Qm = xm allocates the resource to any

agent who has a higher score than the cutoff for their group and implements the optimal

allocation.

Part (2): The if part of the result follows from observing the priority policy P (s,m) =

s+ um(1)− um(0) is equivalent to the optimal APM A∗ under risk neutrality since um(1)−
um(0) = um(ym+1)−um(ym) for all m, ym. Thus, by Theorem 7, P (s,m) = s+um(1)−um(0)

is first-best optimal.

To prove the only if part, assume risk neutrality does not hold and let m denote a group

such that um does not satisfy risk neutrality. For a contradiction, assume that P is an

optimal priority policy. First, we observe that P (s,m) must be strictly increasing in s for all

m. To see why, assume P (s,m) = P (s′,m) where s > s′ and just consider an ω where there

are q − 1 group m agents with scores strictly higher than s, and no other agents. Clearly,

the optimal allocation would be to allocate the resource to all agents but (s′,m), while P

allocates the resource to (s′,m) with at least probability 1/2.
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Second, let m denote a group such that um does not satisfy risk neutrality. Take another

arbitrary group n. We have the following:

Claim 22. Either (i) there exists t < q, sm, sn such that

um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn) (132)

or (ii) there exists t < q such that

um(t+ 1)− um(t) + h(1) < un(q − t)− un(q − t− 1) + h(0) (133)

um(t)− um(t− 1) + h(0) > un(q − t+ 1)− un(q − t) + h(1) (134)

Proof. From non-triviality, we know that um(1)− um(0) + h(1) > un(q) − un(q − 1) + h(0)

and un(1)− un(0) + h(1) > um(q)− um(q − 1) + h(0). The result then follows from the fact

that h is continuous and strictly increasing and um and un are concave.

We first prove the result under case (ii). Fix two agents with scores sm ∈ (0, 1), who

belong to group m and sn ∈ (0, 1), who belong to group n. Assume that there are t − 1

group m agents and q − t group n agents with higher scores than max{sn, sm}, so a total of

t group m agents and q − t + 1 group n agents. Note that in this case, only one agent will

not be allocated the resource in the optimal allocation, and that would be either (sm,m) or

(sn, n). From equation 134, (sm,m) is more preferred than (sn, n) and therefore it must be

that P (sn, n) < P (sm,m), as otherwise P would not be optimal. Next, assume that there

are t group m agents and q − t − 1 group n agents with higher scores than max{sn, sm}.
From equation 133, (sn, n) is more preferred than (sm,m) and therefore it must be that

P (sm,m) < P (sn, n), which is a contradiction.

We now prove the result under case (i).

Claim 23. In case (i), any optimal priority policy P must satisfy P (sm + ε,m) > P (sn, n)

for all ε > 0 and P (sm − ε,m) < P (sn, n) for all ε > 0

Proof. From Equation 132, we see that when there are t group m agents and q − t − 1

group n agents with higher scores, (sm+ ε,m) is strictly preferred to (sn, n), which is strictly

preferred to (sm − ε,m).

Since um is not linear, there exists an l such that um(l+ 1)− um(l) < um(l)− um(l− 1).

There are two possibilities: l ≤ t or l > t. First, suppose that l ≤ t. We have that:

um(l)−um(l−1)+h(sm) > um(l+1)−um(l)+h(sm) ≥ un(q−l)−un(q−l+1)+h(sn) (135)

where the first inequality follows from um(l+ 1)− um(l) < um(l)− um(l− 1) and the second

inequality follows as um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn), um and
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un are concave, and l ≤ t. Thus, for sufficiently small ε > 0, we have that:

um(l)− um(l − 1) + h(sm − ε) > un(q − l)− un(q − l + 1) + h(sn) (136)

Given this inequality, we see that when there are l − 1 group m agents and q − l group n

agents with higher scores, (sm − ε,m) is strictly preferred to (sn, n). Thus, to implement

the optimal allocation, it must be that P (sm − ε,m) ≥ P (sn, n), which is a contradiction to

Claim 23.

Second, suppose that l > t. We know that:

um(t+ 1)− um(t) + h(sm) = un(q − t)− un(q − t− 1) + h(sn) (137)

As l > t, from concavity of um and un,

um(l)− um(l − 1) + h(sm) ≤ un(q − l + 1)− un(q − l) + h(sn) (138)

From concavity of un and um:

um(l + 1)− um(l) + h(sm) < un(q − l)− un(q − l − 1) + h(sn) (139)

Thus, for sufficiently small ε > 0, we have that:

um(l + 1)− um(l) + h(sm + ε) < un(q − l)− un(q − l − 1) + h(sn) (140)

Given this inequality, we see that when there are l group m agents and q − l − 1 group n

agents with higher scores, (sn, n) is strictly preferred to (sm + ε,m). Thus, to implement

the optimal allocation, it must be that P (sm + ε,m) ≤ P (sn, n), which is a contradiction to

Claim 23.

Part (3): To prove the if part, fix an ω and let µ∗ denote the optimal allocation under ω.

Let x∗m denote the number of group m agents allocated the resource at µ∗ and xm(ω) denote

the total number of group m agents under ω.

Claim 24. If the authority is extremely risk-averse, then x∗m ≥ min{xm(ω), xtarm }

Proof. Assume for a contradiction this is not the case. Then x∗m < xm(ω) and x∗m < xtarm .

Since
∑

m∈M xtarm ≤ q and x∗m < xtarm , there exists n ∈ M such that x∗n > xtarn . Let sn

denote the score of the lowest-scoring group n agent who is allocated the resource, and let

sm denote the score of any group m agent who is not allocated the resource, which exists as

x∗m < xm(ω). Since the authority is extremely risk-averse, we have the following:

h(sm) + um(x∗m + 1)− um(x∗m) > h(sn)− un(x∗n) + um(x∗n − 1) (141)

However, this contradicts the optimality of µ∗ and proves the claim.

Claim 25. If the authority is extremely risk-averse, x∗m > xtarm and x∗n > xtarn , µ∗(s,m) = 0

and µ∗(s′, n) = 1, then s′ > s.
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Proof. Assume for a contradiction that s > s′.46 The difference in the utility of the authority

when allocating the resource to (s,m) rather than (s′, n) is given by

h(s) + um(x∗m + 1)− um(x∗m)− (h(s′)− un(x∗n) + um(x∗n − 1)) = h(s)− h(s′) > 0 (142)

which is a contradiction to optimality of µ∗.

The previous two claims show that under any ω, the optimal allocation admits (i) the

highest-scoring xtarm agents from each group (provided that they exist) and (ii) highest-scoring

agents who are not in (i), until the capacity is exhausted. Clearly, the quota policy Qm = xtar
m

and D(R) = |M|+ 1 implements this outcome at every ω.

To prove the only if part, assume that {Qm}m∈M is part of an optimal quota policy.

Claim 26. For and each m,n ∈M and any t, l such that t ≤ Qm, Qm > 0 and l ≥ Qn, we

have that:

um(t)− um(t− 1) + h(0) ≥ un(l + 1)− un(l) + h(1) (143)

Proof. Assume that at ω, there are t group m agents, one of which one has score 0 and l+ 1

group n agents with scores higher than 1 − ε1 and q agents from other groups who have

scores higher than 1− ε2, where ε1 > ε2 > 0. As t ≤ Qm and Qn < l + 1, t group m agents

and Qn < l+ 1 group n agents are admitted under Q. Since Q is optimal for all ε1, we must

have that:

um(t)− um(t− 1) + h(0) ≥ un(l + 1)− un(l) + h(1− ε1) (144)

The statement then follows from continuity of h by taking the limit ε1 → 0.

Claim 27. Merit slots are processed last at the optimal quota policy.

Proof. For a contradiction, assume there is a merit slot that is processed before a quota slot.

Let l denote the last merit slot that precedes a quota slot. Let m denote a group that has a

quota slot after l. We consider a state in which: (i) there are q group n agents with scores

ŝ− εi, where εi > 0 for all i ∈ {1, . . . , q} (let ŝ denote the score of the highest-scoring agent

from this group), (ii) there are Qm group m agents with scores ŝ + εj for j ∈ {1, . . . , Qm}
(let ŝ denote the score of lowest-scoring agent from this group) and one with score ŝ/2, and

(iii) q agents from other groups with scores in (ŝ, ŝ). A group m agent with score ŝ+ εk for

some k is matched to l, thus (ŝ/2,m) is matched to a later quota slot, while some agents

with type (ŝ − εj, n) are rejected for some j. Let ŝ − εj′ be the score of the highest-scoring

such agent. From the optimality of the quota policy we have that

um(Qm + 1)− um(Qm) + h(ŝ/2) ≥ un(Qn + 1)− un(Qn) + h(ŝ− εj′) (145)

46Remember that s′ = s was ruled out by assumption.

92



Let s∗ be the score of the lowest-scoring group n agent (i.e., s∗ = mini∈{1,...,q} ŝ− εi). Next,

consider the modified version of the above state, all group n agents are the same, but all

of the other Qm group m agents as well as q agents from other groups now have scores in

(s∗ − ε̂, s∗) and the group m agent who had a score of ŝ/2 now has a score of ŝ/2 + ε̂ for

ε̂ > 0. Note that now the group n agent with score ŝ− εj′ is allocated the slot l or an earlier

slot, while the agent (ŝ/2 + ε̂, m) is not allocated to any slot. Thus

um(Qm + 1)− um(Qm) + h(ŝ/2 + ε̂) ≤ un(Qn + 1)− un(Qn) + h(ŝ− εj′) (146)

which, since h is strictly increasing, implies that um(Qm + 1)− um(Qm) + h(ŝ/2) < un(Qn +

1)− un(Qn) + h(ŝ− εj′). This contradicts Equation 145, proving the claim.

Given the previous two claims, the following claim proves the result.

Claim 28. If merit slots are processed last, then for all l ≥ Qm and j ≥ Qn

um(l + 1)− um(l) = un(j + 1)− un(j) (147)

Proof. Assume for a contradiction this does not hold. Without loss of generality, assume

um(l + 1)− um(l) > un(j + 1)− un(j) and define δ as

δ = (um(l + 1)− um(l))− (un(j + 1)− un(j)) (148)

Consider a state with q − 1 agents with scores higher than s∗, of which exactly Qm are

group m agents and Qn are group n agents. Moreover, there is one more group m agent with

score s′ < s∗ (denote this agent by θm) and one more group n agent with score s′′ ∈ (s′, s∗)

where h(s′′)−h(s′) < δ (denote this agent by θn). Note that all agents apart from θm and θn

are allocated the resource before the final merit slot. Moreover, since θn has a higher score,

she obtains the final merit slot. However, this is a contradiction to the optimality of Q as

h(s′′)− h(s′) < δ and allocating that resource to θm gives the authority higher utility. This

proves the claim.

Taken together, claims 26 and 28 prove that a fictitious authority that is extremely risk-

averse with xtar
m = Qm agrees with the authority on the optimal allocation, for all ω. To

see this, observe that claim 26 implies that diversity preferences dominate any concern for

scores when a group is allocated less than Qm. Moreover, conditional on being allocated at

least Qm, it is as if there is no residual diversity preference, by claim 28. This proves the

only if part of (3), which finishes the proof of the result.
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G.4 Characterization of Stable Allocations in Discrete Economies

In this section, we extend our discrete model to the multiple authority case. Of course, in

discrete models, there can be multiple stable matchings. This notwithstanding, we show that

agent-proposing DA, when combined with the optimal APM, implements the agent-optimal

stable allocation.

Let Θ0 denote the set of agents. C = {c0, c1, . . . , c|C|−1} denotes the set of authorities. qc

denotes the capacity of authority c and qc0 ≥ |Θ0|. θ = (s,m,�) ∈ [0, 1]|C| ×M×R = Θ,

where R is set of all complete, transitive, and strict preference relations over C such that c0

is less preferred than all c ∈ C. For each type θ, sc(θ) denotes the score of θ at authority c

and m(θ) denotes the group of θ.

A matching in this environment is a function µ : C ∪ Θ → 2Θ ∪ C where µ(θ) ∈ C is the

authority any type θ is assigned and µ(c) ⊆ Θ is the set of agents assigned to authority c,

which satisfies |µ(c)| ≤ qc for all c. xc(µ) = {xm,c(µ)}m∈M denotes the number of agents

of each group assigned to authority c at µ while s̄hc(µ) =
∑

θ∈µ(c) h(s(θ)) denotes the score

utility the authority derives from µ. The preferences of the authority are given by:

ξc(s̄hc , xc) = s̄hc +
∑
m∈M

um,c(xm,c) (149)

where hc is continuous and strictly increasing and um,c : R → R is concave for all m ∈ M
and c ∈ C̄.

In Theorem 3, we showed that in the continuum model, there is stable matching and

this matching is a cutoff matching. It is well known that in discrete models there may be

multiple stable matchings, so the first part of the result does not hold. However, we can

extend the second part of Theorem 3. Recall that in the discrete setting, a matching µ is

stable if there are no blocking pairs, that is, there does not exist an agent θ and an authority

c ∈ C (which includes the dummmy authority) such that c �θ µ(θ) and either (i) c does

not fill its capacity or (ii) there exists θ′ ∈ c such that ξc(s̄hc(µ
′), xc(µ

′)) > ξc(s̄hc(µ), xc(µ)),

where µ′(c) = µ(c) \ θ′ ∪ θ.

Proposition 11. If µ is a stable matching, then it is a cutoff matching.

Proof. If µ is not a cutoff matching, then there exist θ = (s,m), θ′ = (s′,m) and c ∈ C such

that µ(θ′) = c, c >θ µ(θ) and s > s′. Define µ′ as follows. µ′(c) = µ(c)\θ′∪θ and µ′(c′) = µ(c′)

for all c′ 6= c. As s > s′ and hc is strictly increasing, ξc(s̄hc(µ
′), xc(µ

′)) > ξc(s̄hc(µ), xc(µ)),

which contradicts the stability of µ.

In discrete markets, there may be multiple stable matchings. We now show that when

all authorities use the optimal APM, Agent-Proposing Deferred Acceptance implements the
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agent-optimal stable matching, in other words, Theorem 4 holds if we replace the unique

stable matching with agent optimal stable matching. For this result, we also assume that

the authorities preferences are strict in the sense that given the finite economy Θ and two

different matchings µ and µ′ such that µ(c) 6= µ(c′), ξc(s̄hc(µ), xc(µ)) 6= ξc(s̄hc(µ
′), xc(µ

′)).

Theorem 9. Agent-Proposing Deferred Acceptance implements the agent-optimal stable

matching when all authorities use the optimal APM.

Proof. We first define substitutable preferences in this setting, following Definition 6.2 in

Roth and Sotomayor (1990). A choice rule satisfies substitutes if an agent θ is chosen from

a set of agents Θ and θ′ 6= θ, then θ must be chosen from Θ′ ≡ Θ \ θ′.
We first show that under our assumptions on the preferences, the optimal APM for an

authority satisfies this property. Suppose that θ is chosen from some Θ under the optimal

APM for some authority. For a contradiction, suppose that θ is not chosen from Θ′. As

the optimal APM admits higher-scoring agents before lower-scoring ones, this means that

there are strictly fewer m(θ) agents chosen from Θ′. Let nm and n′m denote the number of

m group m agents chosen from Θ and Θ′. Then we have nm(θ) > n′m(θ). As θ is not chosen

from Θ′, there must be a group m′ such that more m′ agents are chosen from Θ′ compared

to Θ. Let θ̂ denote the highest scoring m′ agent that is not chosen from Θ and θ̃ denote the

lowest scoring m′ agent chosen from Θ′. Note that s(θ̂) ≥ s(θ̃), which yields the following

inequalities:

Am(θ)(nm(θ), s(θ)) > Am(θ̂)(nm(θ̂), s(θ̂)) ≥ Am(θ̃)(n
′
m(θ̃)

, s(θ̃))

> Am(θ)(n
′
m(θ), s(θ)) ≥ Am(θ)(nm(θ), s(θ))

(150)

where the first inequality holds as θ is chosen from Θ while θ̂ was not chosen (and the

preferences were assumed to be strict), the second inequality holds as n′
m(θ̃)

> n′
m(θ̂)

and

s(θ̂) ≥ s(θ̃), the third inequality holds as θ̃ is chosen from Θ′ while θ was not chosen (and

the preferences were assumed to be strict), and the fourth inequality holds as nm(θ) > n′m(θ),

which is a contradiction—as the first and final terms are identical.

Given this, the theorem follows from Theorem 6.8 in Roth and Sotomayor (1990): when

authorities have substitutable preferences (and preferences are strict), the agent-proposing

deferred acceptance algorithm produces the agent-optimal stable matching.

G.5 Dominance of APM in Sequential Discrete Economies

We finally extend the dominance of APM to discrete economies. As in Appendix E, agents

apply to the authorities sequentially, who decide which agents to admit. We index the stage

of the game by t ∈ T = {1, . . . , |C| − 1}. Each stage corresponds to an authority I(t),
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where I : T → T . At each stage t, any unmatched agents choose whether to apply to

authority I(t). Given the set of applicants, authority I(t) chooses to admit a subset of these

agents. Given this, histories are indexed by the path of the remaining of agents who have

not yet matched, ht−1 = (Θ0,Θ1, . . . ,Θt−1) ∈ Ht−1. Given each history ht−1 and set of

applicants ΘA
c ⊆ Θ, a strategy for an authority returns a set of agents ΘG

c ⊆ Θ whom they

will admit such that ΘG
c ⊆ ΘA

c and |ΘG
c | ≤ qc for each time at which they could move t ∈ T ,

ac,t : Ht−1 × P(Θ) → P(Θ), where P(Θ) is the power set over Θ. A strategy for an agent

returns a choice of whether to apply to authorities at each history and time for all agent

types θ ∈ Θ, σθ,t : Ht−1 → [0, 1]. We moreover say that a strategy ac̃,t for an authority c̃ at

time t is dominant if it maximizes authority utility regardless of {{ac,t}c∈C/{c̃}, {σθ,t}θ∈Θ}t∈T
and I.

Theorem 10. The APM A∗c is a dominant strategy for all authorities.

Proof. We prove that APM A∗c implements a dominant strategy for all authorities in all stages

by backward induction. Consider the terminal time t = |C| − 1. Some set of agents Θ̂ ⊆ Θ

applies to the authority. Regardless of Θ̂, by Theorem 7 we have that the set of agents chosen

under any selection from APM A∗c is first-best optimal. Thus, A∗c is dominant. Consider

now any time t < |C| − 1, precisely the same argument applies and A∗c is dominant.
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