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Abstract

We introduce a principal-agent model with costs of determining what is contractible.

If there are front-end costs of distinguishing one action from another when writing

contracts, then optimal contracts specify finitely many actions out of a continuum.

This conclusion holds even when the cost of complete contracts is arbitrarily small but

does not hold in the presence of arbitrarily large back-end costs of enforcing contracts.

We apply our results to the design of employment contracts. Our model rationalizes

the common practice of using discrete pay grades and predicts their rigidity in the face

of small—but not large—productivity changes.
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1 Introduction

Contracts are not enforceable by fiat. Contractual enforceability obtains only under care-

ful writing, ensuring the availability of evidence that can be used to prove or disprove the

legality of a given action to an external arbitrator. Accordingly, the literature on contract

law emphasizes the importance of front-end transaction costs of “foreseeing possible future

contingencies, determining the efficient obligations that should be enforced in each contin-

gency, [. . . ] and drafting the contract language that communicates their intent to courts”

(Scott and Triantis, 2005). The fact that lawyers spend up to 60% of their time drafting

and reviewing documents (Thompson Reuters, 2024) underscores the importance of these

front-end costs for contract design.

In practice, contracting parties weigh such burdens of complex contracts against their

incentive gains. The outcome of this balancing act is that even billion-dollar commercial

contracts are perplexingly vague, filled with phrases like “best efforts,” “reasonable care,”

and “good faith” (Scott and Triantis, 2005). Yet, the textbook mechanism design approach

to optimal incentive contracting (see e.g., Bolton and Dewatripont, 2004; Laffont and Mar-

timort, 2009) abstracts away from costs of writing contracts and does not speak to the fact

that optimal contracts are so vague.

In this paper, we propose a framework for studying contractibility design in principal-

agent settings. We model contractibility via a correspondence mapping what the principal

asks the agent to do—or the “spirit” of the contract—to the set of actions that the agent

can legally take following this request—or the “letter” of the contract. The principal designs

contractibility to trade off the benefits of a finer-tuned contract against front-end costs.

We show that, under a large class of costs formalizing those incurred at the front-end,

optimal contractibility is coarse, specifying only finitely many recommendations out of a

continuum of possibilities. Optimal contracts are therefore vague: many actions are legally

consistent with each of these finitely many recommendations. This conclusion holds even

when the cost of perfect contractibility is arbitrarily small and the marginal cost of greater

contractibility vanishes as contracts become complete. We show that it is the nature of

costs—and not their magnitude—that generates contractual incompleteness.1 More specif-

ically, while front-end (fixed) costs generate incompleteness, back-end (variable) costs of

enforcing contracts do not. We apply these results to study contractibility design for em-

ployment relationships. Our model rationalizes discrete pay grades, a common pay structure

in practice (Bewley, 1999), as well as their rigidity in the face of productivity shocks.

1We adopt the definition of contractual incompleteness used, among others, by Spier (1992) and Scott
and Triantis (2005). That is, while the contract specifies an obligation for each outcome, it does not specify
a different obligation for each outcome, even when it is efficient to do so.
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Model. A principal contracts with an agent who has private information. The principal

writes a contract that specifies payments and payoff-irrelevant recommendations. The agent

selects a recommendation and then takes the final, payoff-relevant action among those that

are legal in light of the recommendation and the corresponding letter of the contract. The

scope of contracts is specified by a contractibility correspondence, which describes all legal

actions that the agent can choose after receiving a given recommendation.

The principal designs a contractibility correspondence in a pre-contractual stage. A con-

tractibility correspondence is feasible only if it can be derived from an underlying evidentiary

structure in which agents’ actions generate evidence that the principal can use in court. The

contractibility correspondence represents, for each initial recommendation, the set of actions

that cannot be proven to be inconsistent with that recommendation. That is, the agent is

innocent until proven guilty. The key economic assumption that defines the class of feasible

contractibility correspondences is monotonicity: higher actions generate higher evidence.

Contractibility has a cost, reflecting the principal’s efforts in writing the contract and

building the evidentiary structure that makes it enforceable. As a leading example, we define

a class of costs of distinguishing actions motivated by front-end costs: the principal pays a

cost g(x, y) > 0 for every possible recommendation y and for every action x that they want to

legally rule out under recommendation y. In the language of evidence, g(x, y) is the cost the

principal pays for the ability to produce some evidence under x that would be inconsistent

with recommendation y.

The main assumption that we place on costs of contractibility is strong monotonicity.

This property is most easily understood as regards the cost savings from ceasing to perfectly

distinguish an interval of actions. In this case, strong monotonicity implies that the marginal

cost of introducing perfect contracting for an interval of actions is (at most) second-order

in the length of the interval. Every cost of distinguishing actions is strongly monotone.

Intuitively, to distinguish t actions from t other actions, the number of costly comparisons

that must be made is proportional to t2.

Main Results. If costs are strongly monotone, then optimal contracts are coarse. In this

case, the optimal contractibility correspondence specifies finitely many “grades,” intervals of

recommendations that allow the agent to take the same set of actions.

The intuition behind this result is that the benefits of contracting are third-order while

costs are second-order. Specifically, to rule out intervals of perfect contractibility, we con-

struct a payoff-improving alternative contractibility correspondence that introduces “local

incompleteness,” or replaces an interval with its two boundary points. For each type that

was recommended an action in the interior of this interval, the principal was unconstrained

by imperfect contractibility and therefore maximizing the virtual surplus function. Thus,
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there is no first-order loss in perturbing the assignment. To obtain the total loss in surplus,

we integrate these second-order losses over the interval of types whose assignment changes,

which is also proportional to the width of the interval—thus obtaining a third-order loss.

This argument rules out intervals of perfect contractibility. More technical arguments based

on similar set-valued perturbations rule out all other infinite sets.

Large contractibility costs are neither necessary nor sufficient for the conclusion that op-

timal contracts are coarse. The non-necessity of large costs follows from showing that strong

monotonicity is consistent with costs satisfying both of the following properties: perfect

contractibility is arbitrarily cheap and the asymptotic marginal cost of adding additional

recommendations converges to zero. The non-sufficiency follows by showing that an alterna-

tive class of costs of contractibility, derived from back-end costs of contractual enforcement,

yield complete contracts no matter their size. Concretely, we show that if the principal must

pay g(x, y) to distinguish x from y only in proportion to how likely it is that they would

recommend y, then optimal contracts can be complete. This result highlights an important

distinction between front-end (fixed) costs of contractibility and back-end (variable) costs of

contractibility for optimal contractibility design.

We provide further results that describe how the economic primitives of the principal-

agent problem affect both the coarseness of contracts and the design of the optimal contract.

First, we derive an upper bound on the optimal number of contractible actions. This bound

increases in the maximum concavity of the virtual surplus function because this scales the

principal’s loss from moving the agent’s assignment and it decreases in the minimum com-

plementarity of types with actions because this scales how tightly packed the principal’s

preferred allocations can be in small intervals. Second, we explicitly derive optimal coarse

contracts using simple first-order conditions that equate the marginal benefits on virtual

surplus of changing allocations with the marginal costs of refining contractibility.

Application: Employment Contracts. We use the model to study contractibility design

in the workplace. Agents are workers who differ in their privately known productivity and

can exert effort to produce output for a principal. The principal is a firm that uses incentive

contracts to induce effort, but also bears front-end costs of designing them.

Our main result implies that the firm optimally employs “pay grades,” discrete tiers of

compensation that are common in practice, unlike piece rates (Bewley, 1999). We show

that pay structures are rigid and unchanged in response to small changes to productivity,

while large changes can induce a complete restructuring. Finally, the presence of incomplete

information about worker productivity begets coarser contracts.
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Related Literature. Our approach to modeling imperfect contractibility is inspired by the

dichotomy between perfunctory performance (the letter of the contract) and consummate

performance (the spirit of the contract) emphasized by Williamson (1975) and Hart and

Moore (2008). We formalize this distinction via contractibility correspondences, which nest

as a particular and special case the type of imperfect contractibility (free disposal) studied

by Grubb (2009) and Corrao, Flynn, and Sastry (2023). Importantly, and differently from

these papers, we study the optimal extent of contractibility. In addition, we micro-found

the properties of contractibility from an evidentiary foundation that builds upon Green and

Laffont (1986) and Hart, Kremer, and Perry (2017). Two new features of our evidentiary

model are the endogeneity of evidence—evidence is endogenously generated by the agent’s

action, rather than exogenously by their type—and its optimal design.

Our work fits into a larger literature that provides foundations for incomplete contracts

based on transaction costs (Simon, 1951; Coase, 1960). With respect to the classification of

approaches described by Tirole (1999), our analysis shows how costs of writing contracts (i.e.,

front-end costs) do lead to incompleteness while costs of enforcing contracts (i.e., back-end

costs) do not.2

Existing work on contracting with costly writing and/or enforcement studies problems

with computational constraints on what events can be described (Anderlini and Felli, 1994,

1999; Al-Najjar, Anderlini, and Felli, 2006) and costs of writing that scale linearly with

the number of clauses in a contract (Dye, 1985; Bajari and Tadelis, 2001; Battigalli and

Maggi, 2002, 2008). Relative to this work, our analysis is different in two primary ways.

First, we study an infinite (rather than finite) state and action space in which continuum

contracts are feasible at finite cost. Thus, our analysis can directly speak to whether it

is desirable to implement infinite contracts, like the extensively studied examples of piece

rates for workers (Holmström, 1979; Holmström and Milgrom, 1987) and nonlinear pricing

with smooth quantity discounts (Wilson, 1993). Second, as mentioned above, our analysis

proposes a new framework for justifying costly contractibility based on costly evidence. This

microfoundation for the form of contractibility costs is especially important in light of our

result that some, but not all, costs lead to optimal coarseness.3

2There are, of course, other perspectives on why contracts may be incomplete. One such approach is
based on the premise that parties can costlessly renegotiate a previously specified incomplete contract ex
post (Segal, 1999; Hart and Moore, 1999; Che and Hausch, 1999). Another approach is based on the premise
that ex ante costs of contracting serve a signaling role in the presence of private information for the principal
(Spier, 1992). To avoid revealing information, the principal can optimally resort to incomplete contracts.
This result is complementary to our analysis, where we show that—even in the absence of signaling effects—ex
ante costs of contractibility generate optimally incomplete contracts.

3For example, Tirole (1999) raises the the possibility that the fixed cost per contingency proposed by Dye
(1985) is ad hoc and restrictive because it rules out a continuum contract specifying constant wages (per
unit of time) as infinitely costly.
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Finally, our work is related to models in which a continuous variable is optimally dis-

cretized, such as in rational inattention (Jung, Kim, Matějka, and Sims, 2019), categorization

(Mohlin, 2014), or simultaneous mechanism design and information design (Bergemann and

Pesendorfer, 2007; Bergemann, Heumann, and Morris, 2022). A key step in our proof es-

tablishes novel bounds on the loss to the principal’s payoff under their optimal mechanism

from perturbations of contractibility. These bounds contribute to the literature on the loss

from finite menus in nonlinear pricing models initiated by Wilson (1989) and generalized by

Bergemann, Shen, Xu, and Yeh (2012), and Bergemann, Yeh, and Zhang (2021).

Outline. Section 2 introduces the model. Section 3 presents our main results. Section 4

applies our results to study optimal employment contracts. Section 5 presents a sketch of

the proof of our main result on coarseness. Section 6 concludes.

2 Model

2.1 The Agent and the Principal

We build on a canonical principal-agent model. The agent’s type θ ∈ Θ = [0, 1] is drawn

from a distribution F with strictly positive density f . The agent privately knows their type

and can take an action x in the interval X = [0, x] ⊂ R. The agent has a twice continuously

differentiable utility function u : X × Θ → R. We assume that higher types value higher

actions more and that preferences are monotone increasing in the action: (i) u is strictly

supermodular in (x, θ) and (ii) for each θ ∈ Θ, u(·, θ) is strictly monotone increasing over X.

The case with strictly decreasing preferences over X is analogous. All agent types value the

zero action the same as their outside option payoff, which we normalize to zero, or u(0, θ) = 0

for all θ ∈ Θ. The agent has quasilinear preferences over actions and money t ∈ R, so their

transfer-inclusive payoff is u(x, θ)− t.

The principal’s payoff derives from three sources. The first is the monetary payment

t ∈ R from the agent. The second is a payoff that depends on the agent’s action and type

given by π : X × Θ → R, a twice continuously differentiable function such that π(0, θ) = 0

for all θ ∈ Θ. The third is the cost of contractibility, which we will introduce in due course.

We define the virtual surplus function J : X ×Θ → R as:

J(x, θ) = π(x, θ) + u(x, θ)− 1− F (θ)

f(θ)
uθ(x, θ) (1)

This is the total surplus generated when agent θ takes action x, net of the payments to

the agent to ensure local incentive compatibility. We assume that J is twice continuously
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Figure 1: Timeline of Events

Contractibility Design

Principal chooses contractibility C,
commits to a menu of contracts

M = {(yi, ti)}i∈I

Transaction

Agent θ decides to participate
and, if so, selects (y, t) ∈ M

and pays t to principal

Action

Agent θ chooses
final action
x ∈ C(y)

differentiable, strictly supermodular in (x, θ), and strictly quasiconcave in x.4 We assume

supermodularity of the virtual surplus function in order to emphasize that the coarseness

that will arise from contractibility design is an entirely distinct phenomenon from gaps in

allocations that can occur under optimal bunching.

Example 1 (The Mussa and Rosen (1978) Linear-Quadratic-Uniform Model). The payoffs

and type distribution in Mussa and Rosen (1978) with u(x, θ) = xθ, π(x, θ) = −x2/2, and

F (θ) = θ satisfy all of our assumptions. △

2.2 Partial Contractibility

With perfect contractibility, a contract corresponds to a pair (x, t) ∈ X×R, composed of an

enforceable action taken by the agent and the monetary transfer between the two parties. In

our analysis, we relax the assumption that the principal can perfectly contract on actions.

To do so formally, we define a contractibility correspondence as a closed-valued and lower-

hemicontinuous correspondence C : X ⇒ X that maps every recommendation y ∈ X to a

feasible set of final actions x ∈ C(y) that the agent can take following that recommendation.5

In our interpretation, C represents a codification of which actions can and cannot be proven

to an external arbitrator as consistent with the request of the principal. More colloquially, y

is the “spirit of the contract,” which may differ from the full, legally allowable “letter of the

contract” C(y). With this, a contract is now a pair (y, t) ∈ X × R composed of the initial,

contractible recommendation and the monetary transfer. However, unlike the contractible

recommendation, the action is only partially contractible and the agent can take any final

action x ∈ C(y).

The game between the agent and the principal is summarized in Figure 1. First, the

principal chooses a contractability correspondence C and commits to a menu of contracts

4Sufficient primitive conditions that yield the maintained assumptions on J are that u and π are three
times continuously differentiable with uxθ, uxxθ, πxθ > 0, uxx, uxθθ, πxx < 0, and that F has the increasing
hazard rate property.

5Closed-valuedness and lower-hemicontinuity are technical conditions that will ensure the existence of an
optimal contract.
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M = {(yi, ti)}i∈I for some arbitrary index set I. Second, the agent observes their private

information θ ∈ Θ, decides whether to conduct a transaction with the principal and, if they

do, picks a contract (y, t) ∈ M. Third, the agent chooses a final action x ∈ C(y). Finally, all

payoffs are realized. The principal can equivalently choose a contractibility correspondence

and commit to a tariff T : X → R assigning a transfer to every recommendation y, with

prohibitively costly recommendations being the out-of-menu ones. We will often consider

this equivalent formalization of the contract-design step.

Regular Contractibility Correspondences. We allow the principal to choose from a

class of contractibility correspondences that discipline the relationship between the spirit

and letter of a contract. To do this, we impose regularity conditions on contractibility that

are motivated by a legal interpretation.

Definition 1 (Regularity). A contractibility correspondence C is regular if it satisfies:

1. Reflexivity: for every y ∈ X, y ∈ C(y).

2. Excludability: C(0) = {0}.
3. Transitivity: for every x, y, z ∈ X, if x ∈ C(y) and z ∈ C(x), then z ∈ C(y).

4. Monotonicity: for every x, y ∈ X, if x ≤ y, then C(x) ≤SSO C(y).6

We denote the set of regular contractibility correspondences by C. Reflexivity requires

that the agent can take action y when they are called upon to take action y by the contract.

Excludability requires that the principal can always replicate the outside option by adding

the contract (0, 0) to the menu. Transitivity requires that, if an agent can reach action x

by deviating from y and z by deviating from x, then they can reach z by deviating from y.

Monotonicity requires that, if an agent is called upon to do z ≤ y, then the set of things

they can do at recommendation z is also lesser than the set of things they can do at y.7 The

following remark provides an evidentiary foundation for these conditions on contractibility:

Remark 1 (An Evidentiary Foundation for Regularity). Regular contractibility correspon-

dences arise as representing which actions the agent can take when the principal can use

evidence generated by their actions to prove their contractual (in)consistency to an external

arbitrator. Formally, an evidentiary correspondence E : X ⇒ Ω generates for every final

6≤SSO denotes the strong set order.
7This is analogous to the standard monotone likelihood ratio property in moral hazard. Indeed, mono-

tonicity of C is equivalent to the following discrete monotone likelihood ratio property defined with respect
to set membership: For all x, x′, y, y′ ∈ X such that x ≤ x′ and y ≤ y′,

I[x′ ∈ C(y′)]I[x ∈ C(y)] ≥ I[x′ ∈ C(y)]I[x ∈ C(y′)]
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action of the agent x ∈ X a set of evidence E(x) ⊆ Ω. This evidentiary formalism follows

closely that of Green and Laffont (1986) and Hart, Kremer, and Perry (2017), but differs

in the crucial respect that evidence is endogenously generated by the action of the agent.

The principal can prove that the action taken by the agent x was not consistent with the

recommended action y if there exists a piece of evidence generated by the agent’s action

ω ∈ E(x) that could not have been generated by the recommendation ω ̸∈ E(y). A court can

sanction the agent and impose an arbitrarily large financial penalty if the principal can prove

that the agent did not act in accordance with the recommendation. Internalizing this, if the

agent is recommended to take action y, they would only ever take actions x that cannot be

proven to be inconsistent with y. That is, the agent would only consider taking actions x

such that E(x) ⊆ E(y). Thus, the agent can take all (and only all) of the following actions

without being proved to have deviated:

CE(y) = {x ∈ X : E(x) ⊆ E(y)} (2)

An evidentiary correspondence then induces a contractibility correspondence as the set of

actions to which the agent optimally restricts themselves in the so-called shadow of the law.

This structure immediately implies reflexivity and transitivity of CE . In Appendix C, we

show that excludability and monotonicity are guaranteed whenever: (i) definitive evidence

that the agent was excluded is available and (ii) higher actions by the agent generate higher

pieces of evidence. This second assumption is an evidentiary analog of the standard condition

in moral hazard models that higher actions are associated with higher distributions of signals.

Conversely, we show that for any regular contractibility correspondence C, there exists an

evidentiary correspondence E that satisfies (i) and (ii) such that C = CE . Thus, any regular

C has an evidentiary foundation. △

Having argued that regularity of contractibility has a natural evidentiary foundation, we

now illustrate what regularity rules out (and in) via a series of examples.

Example 2 (Illustrating Regularity). We plot four examples of regular correspondences in

Panel A of Figure 2. In the first regular example (i), all x ≤ 1/2 can be specified perfectly in

the contract, while all x > 1/2 are indistinguishable from one another. In example (ii), the

action space is coarsened into four partitions of indistinguishable actions. In example (iii),

the agent has access to unrestricted free disposal as studied by Grubb (2009) and Corrao,

Flynn, and Sastry (2023). In example (iv), we combine these patterns into a “hybrid.”

We also show four irregular examples in Panel B to better illustrate what our axioms rule

out. Example (i) is not reflexive, since the correspondence does not include the 45 degree

line; (ii) is not transitive, since there are “chains” whereby an agent can reach x from y and

8



Figure 2: Regular and Irregular Contractibility Correspondences
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Panel B:
Irregular C
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ii. Not Transitive
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iii. Not Monotone
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iv. Not Closed

Note: Each graph illustrates a contractibility correspondence. Dark shading denotes the graph
and dashed lines indicate open boundaries of the graph. The examples in Panel A (top row) are
regular. The examples in Panel B (bottom row) are not regular.

z from x but not z from y; (iii) is not monotone, for x > 1/2; and (iv) is not closed, since

C(x) is open at the lower boundary for all x > 1/2. △

We now provide a mathematically convenient characterization of regular contractibility

correspondences that clarifies their properties.

Proposition 1 (Representing Contractibility). A contractibility correspondence C is regular

if and only if it can be written as C(y) = [δ(y), δ(y)], where δ : X → X is an upper semi-

continuous increasing function and δ : X → X is a lower semi-continuous increasing function

such that: (i) y ∈ [δ(y), δ(y)], (ii) δ(x) = δ(y) for all x ∈ [δ(y), y), (iii) δ(x) = δ(y) for all

x ∈ (y, δ(y)], and (iv) δ(0) = 0.

Proof. See Appendix A.1.

This result characterizes regular contractibility correspondences in terms of their upper

and lower envelopes, δ(y) = maxC(y) and δ(y) = minC(y). The monotonicity of these

functions is necessary by Monotonicity. Property (i) implies that C(y) contains y, which is

necessary by Reflexivity. Properties (ii) and (iii) come from Transitivity and are most easily

understood via the graphical illustrations of Figure 2: if either of the envelopes deviate

from the identity line, then they must be flat. In this sense, imperfect contractibility in

our model always presents as “disposal” (“lower triangles”), “creation” (“upper triangles”),

or complete indistinguishability (“boxes”). Finally, property (iv) ensures that C(0) = {0},
which is required by Excludability.
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The properties of δ and δ imply that their images uniquely define these functions. More

formally, given D = δ(X) ⊆ X and D = δ(X) ⊆ X, one can recover uniquely recover the

boundaries of C via the following operations: δ(x) = maxz≤x:z∈D z and δ(x) = minz≥x:z∈D z.

Moreover, bothD andD are closed sets and equal to the fixed points of δ and δ, respectively.8

Indeed, these sets correspond to the recommendations that an agent with monotone decreas-

ing and increasing preferences over final actions, respectively, would follow. We therefore

call these images the sets of self-enforcing recommendations.9

2.3 Costly Contractibility

As we have motivated, front-end costs are practically important for the design of contracts

(Scott and Triantis, 2005). These costs of contractibility reflect the cost of introducing the

legal and organizational apparatus that makes provable when actions are (not) consistent

with the letter of a contract. We express this cost via the function Γ : C → [0,∞].

We can equivalently define each Γ over the space of pairs of functions (δ, δ) satisfying

all the properties in Proposition 1. We endow this space with the relative topology induced

by the L1-norm over pairs of bounded and measurable functions over X.10 For the rest of

the analysis, we assume that the cost function Γ is lower semi-continuous in this topology.

This means that two contractibility correspondences with finite cost whose maximum and

minimum feasible deviations are close on average induce similar costs for the principal.

Our later analysis will show how additional conditions on the monotonicity and smooth-

ness of Γ translate into properties of optimal contractibility. For now, we provide a few

examples of continuous costs and discuss their economic interpretations.

Costs of Distinguishing Actions. Consider a principal who, for every possible spirit

of the contract y, must differentiate the allowed actions within the letter of the contract,

C(y), from the disallowed actions outside of the letter of the contract, X \C(y). Specifically,

suppose that it costs the principal some amount g(x, y) > 0 to distinguish any given recom-

mendation y from every action that is not allowed under this recommendation x ∈ X \C(y),

8All these properties are formally established by Lemma 11 in Appendix B.
9The functions characterized in Proposition 1 are reminiscent of the properties of incentive compatible

assignments in the literature on optimal delegation (see e.g., Melumad and Shibano, 1991; Alonso and
Matouschek, 2008). On the one hand, the properties of δ and δ are directly pinned down by the primitive
properties of the contractibility correspondences rather than by incentive compatibility considerations. On
the other hand, and somehow similarly to the delegation literature, these properties allow us to recast
contractibility design as the design of the sets of self-enforcing recommendations.

10This is the norm defined by ||(δ, δ)||1 =
∫
X

(
|δ(y)|+ |δ(y)|

)
dy. The topology induced by this norm is the

same as the product topology induced by endowing each space with the standard unidimensional L1-norm.
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where g : X × X → R++ is continuous.11 We let G denote the set of such functions g.

In the language of our evidentiary foundation (see Remark 1), this is equivalent to paying

g(x, y) whenever there exists a piece of evidence ω ∈ E(x) such that ω ̸∈ E(y), i.e., when
the principal can distinguish x from y by using the generated evidence. Thus, these costs

accord with the argument from Scott and Triantis (2005) that a designer may incur “high

negotiation and drafting costs” to “partition all contingencies sufficiently” (p. 191). The

cost of distinguishing outcomes is then the total cost of all such distinguishments:

Definition 2 (Costs of Distinguishing Actions). For any g ∈ G, the cost of distinguishing

outcomes is given by:

Γg(C) =

∫
X

∫
X\C(y)

g(x, y) dx dy (3)

Graphically, this is the area above and below the graph of C weighted by g(x, y). There-

fore, the cost of no contractibility and perfect contractibility are respectively equal to 0 and∫
X

∫
X
g(x, y) dx dy. Owing to Proposition 1, we can express this cost in terms of (δ, δ):

Γg(δ, δ) =

∫
X

G(δ(y), y) dy +

∫
X

(
G(x, y)−G(δ(y), y)

)
dy (4)

where G(x, y) =
∫ x

0
g(z, y) dz and we observe Γg is continuous and always finite, that is,

perfect contractibility is not, in principle, prohibitively costly to obtain. A natural special

case is a constant cost of distinguishing actions.

Example 3 (Linear Costs). Suppose that g(x, y) = κ > 0, i.e., all pairs of actions are equally

challenging to distinguish. In this case, the cost of distinguishing is simply proportional to

the area of the graph above and below C, which is the area under δ plus the area above δ:

Γκ(δ, δ) = κ

(∫
X

δ(y) dy +

∫
X

(
x− δ(y)

)
dy

)
(5)

This cost function has the additional property of being linear in (δ, δ). For the regular

contractibility correspondences in Panel A of Figure 2, the linear cost of distinguishing is

proportional to the unshaded area (i.e., the complement of the graph of C). △

Uncertain Costs of Distinguishing Actions. In the same setting as above, assume

now that the principal must choose their legal and technological apparatus before knowing

11Observe that this implies that g(x, x) > 0. This has no practical implications. Indeed, by inspection of
Equation 3, nothing in our analysis changes if we considered ĝ(x, y) = g(x, y)I[x ̸= y], i.e., ruling out any
x ̸= y has strictly positive cost while ĝ(x, x) = 0.
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exactly how costly it is to distinguish pairs of actions. We model this uncertainty of the

principal through a prior distribution µ ∈ ∆(G) with compact support.12

Definition 3 (Uncertain Costs of Distinguishing Actions). For any compactly supported

µ ∈ ∆(G) and λ ∈ [−∞,∞], the uncertain cost of distinguishing outcomes is given by:

Γµ,λ(C) =
1

λ
log

(∫
G
exp (λΓg(C)) dµ (g)

)
(6)

The interpretation is that the principal is a subjective expected utility maximizer in the

face of uncertainty of the costs of distinguishing and their utility takes the CARA form. This

nests the limit cases of λ = 0 and λ = ∞ that, respectively, correspond to the standard cost

of distinguishing with the cost given by gµ =
∫
G g dµ and to the Waldean worst-case scenario

criterion. In general, Γµ,λ is continuous for any choice of (µ, λ).13 Of course, risk-aversion

(λ > 0) is the natural case, but we emphasize that it is neither concavity nor convexity that

drive our results by allowing also for risk-loving preferences (λ < 0).

Foundations of Costs and Additional Cost Functions. In Appendix C, we show how

to derive these cost functions and general properties of cost functions from an evidentiary

foundation (as per Remark 1). Moreover, in Appendix D, we give several other classes of

cost functions based on notions of costly enforcement, costly clauses, and menu costs.

2.4 The Principal’s Problem

We now state the principal’s mechanism and contractibility design problem. Given a fixed

contractibility correspondence C, the revelation principle allows us to restrict to direct and

truthful mechanisms.14 Thus, a mechanism is a triple (ϕ, ξ, T ) comprising a recommendation

ξ : Θ → X, a final action or outcome ϕ : Θ → X, and a tariff T : X → R. The tariff

and the recommendation jointly determine the transfer between the principal and the agent

T (ξ(θ)). The recommendation and the final action must be consistent with the contractibility

correspondence, that is, ϕ(θ) ∈ C(ξ(θ)). This, together with the usual incentive constraints,

determines the set of implementable mechanisms.

Definition 4 (Implementable Mechanism). A mechanism (ϕ, ξ, T ) is implementable given a

contractibility correspondence C if the following three conditions are satisfied:

12We endow the space G of strictly positive continuous real functions defined over X×X with the (relative)
sup norm topology and we endow ∆(G) with the topology of weak convergence.

13This follows because the map (δ, δ, g) 7→ Γg(δ, δ) is continuous and µ is supported on a compact set.
14Following the standard approach in mechanism design, we select the principal’s preferred equilibrium

and restrict to deterministic mechanisms. We omit the formal proof of the revelation principle in this case
as it is standard and closely follows the steps in Myerson (1982).
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1. Obedience:

ϕ(θ) ∈ arg max
x∈C(ξ(θ))

u(x, θ) for all θ ∈ Θ (O)

2. Incentive Compatibility:

ξ(θ) ∈ argmax
y∈X

{
max
x∈C(y)

u(x, θ)− T (y)

}
for all θ ∈ Θ (IC)

3. Individual Rationality:

u(ϕ(θ), θ)− T (ξ(θ)) ≥ 0 for all θ ∈ Θ (IR)

We let I(C) denote the set of implementable mechanisms given C.

Obedience requires that each agent θ chooses an optimal final action ϕ(θ) by optimally

exploiting what is possible under the contract given the initial recommendation ξ(θ), i.e.,

they choose a favorite element from C(ξ(θ)). Incentive Compatibility ensures that the agent

wishes to actually select the recommendation ξ(θ) required by the mechanism, taking into

account both the transfer they pay and their subsequent ability to optimize their final action

within the scope described by the contract. Individual Rationality ensures that the agent is

willing to participate in the mechanism.

Given C, the principal’s problem is:

J (C) := sup
(ϕ,ξ,T )∈I(C)

∫
Θ

(π(ϕ(θ), θ) + T (ξ(θ))) dF (θ) (7)

The principal’s full problem balances the value and the cost of contractibility:

sup
C∈C

J (C)− Γ(C) (8)

As this representation makes clear, designing contractibility and designing the contract are

tightly linked, since contractibility determines what is implementable in the latter problem.

3 Optimal Contractibility and Optimal Contracts

In this section, we state our main results about optimal contractibility and contracts. First,

we derive the value of any regular contractibility correspondence. Second, we introduce

strong monotonicity of costs and show that all of the examples we have provided so far satisfy

this condition. Third, we provide the main theorem on the existence of optimal contractibility

and the necessity of its coarseness under strong monotonicity. Fourth, we characterize the
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allocation and transfer for an optimally coarse contract. Finally, we characterize which finite

set of actions the principal chooses as contractible and describe an algorithm for computing

the optimal contract and contractibility.

3.1 Optimal Contracts and the Value of Contractibility

We first study the problem of optimal contracting conditional on a given extent of con-

tractibility. This also allows us to derive the value of any contractibility correspondence.

In principle, partial contractibility affects the problem in complex ways due to the inter-

actions between Obedience and Incentive Compatibility, which allow for double deviations:

when deciding what type to report, the agent takes into account their ability to later ignore

the spirit of the contract (recommendation y) and instead take a different action within the

letter of the contract (x ∈ C(y), x ̸= y).

We first define the principal’s favorite final action function ϕP : Θ → X as:

ϕP (θ) = argmax
x∈X

J(x, θ) (9)

Moreover, for an arbitrary contractibility correspondence C represented by (δ, δ), we define

the lowest implementable final action greater than ϕP (θ) and the greatest implementable

final action smaller than ϕP (θ) as:

ϕ(θ) = min{x ∈ D : x ≥ ϕP (θ)} and ϕ(θ) = max{x ∈ D : x ≤ ϕP (θ)} (10)

where we recall that D = δ(X) is the set of self-enforcing recommendations. With these

objects in hand, we can now describe optimal contracts:

Proposition 2 (Optimal Contract). Fix a regular contractibility correspondence C with self-

enforcing recommendations D. Any optimal final action function is almost everywhere equal

to:

ϕ∗(θ) =

ϕ(θ), if J(ϕ(θ), θ) > J(ϕ(θ), θ),

ϕ(θ), otherwise.
(11)

Moreover, (ϕ∗, ϕ∗, T ∗) is implementable with:

T ∗(x) = u(x, (ϕ∗)−1 (x))−
∫ (ϕ∗)−1(x)

0

uθ(ϕ
∗(s), s) ds (12)

where (ϕ∗)−1(z) = inf{θ ∈ Θ : ϕ∗(θ) ≥ z}.

Proof. See Appendix A.2.
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We prove this result in three steps. In the first step, we show that a final action function ϕ

is implementable if and only if it is monotone increasing in θ and its image satisfies ϕ(Θ) ⊆ D.

Intuitively, after being recommended any y ∈ X, the agent’s favorite final action is δ(y).

Thus, if y < δ(y), Obedience fails and the contract is not implementable. The substantive

part of the proof establishes sufficiency by ruling out double deviations. The formula for the

supporting tariff (Equation 12) follows from a standard application of the envelope theorem.

In the second step, we combine our characterization of implementable final action functions

with standard mechanism design arguments to reduce the principal’s problem to an optimal

control problem for the final action function. The third step characterizes the optimal final

action function by solving this control problem. Intuitively, the optimal contract implements

the “next best” thing to ϕP (θ) that is actually contractible, in an incentive-compatible way.

Our assumption that J is supermodular guarantees that this pointwise optimal policy is

monotone and therefore globally optimal. As this result shows that ξ can be taken equal to

ϕ, we henceforth focus on (ϕ, T ) as the key objects of the contract.

Proposition 2 also shows that the value of any contractibility correspondence C depends

only on its set of self-enforcing recommendations D:

J (C) =

∫
Θ

J(ϕ∗(θ), θ) dF (θ) =

∫
Θ

max
x∈D

J(x, θ) dF (θ) (13)

With some abuse of notation, we write J : D → R as the value of contractibility, where D
is the collection of sets of self-enforcing recommendations D = δ(X) induced by the upper

envelopes of regular contractibility correspondences C ∈ C. A consequence of Proposition 1

is that D is equal to the set of closed subsets of X that contain both 0 and x (see Lemma

11 in Appendix B).

3.2 Monotone Costs of Contractibility

We now introduce our main assumption, strong monotonicity. This formalizes the idea that

marginal costs of contractibility are always bounded away from zero. Consider first the case

of cost functions defined over the real line. A cost function γ : X → R is strongly monotone

if there exists ε > 0 such that, for all x, x′ ∈ X,

x′ ≥ x =⇒ γ(x′)− γ(x) ≥ ε(x′ − x) (14)

That is, the incremental cost is at least proportional to a linear function of the difference

in the inputs. When γ is continuously differentiable, strong monotonicity is equivalent to

having a derivative that is bounded away from zero: minx∈X γ′(x) > 0.
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We extend this notion to our infinite-dimensional setting. First, we need to define linear

functions of the “difference” in contractibility. Given two regular contractibility correspon-

dences C ′ and C we write C ′ ⊆ C if C ′(x) ⊆ C(x) for all x ∈ X, i.e., C ′ exhibits more

contractibility than C. In this case, C \C ′ is a well-defined correspondence from X to itself

and will represent our notion of difference in contractibility. With this, for every C ′ and C

such that C ′ ⊆ C, we define the linear function of the difference in contractibility as:

L(C \ C ′) = ℓ(Gr(C \ C ′)) (15)

where ℓ denotes the Lebesgue measure over X × X and Gr(C \ C ′) denotes the graph of

C \ C ′. We argue that this is a natural notion of a linear function in our setting as L is

linear in the difference between the graphs of the two correspondences, an object that fully

describes the difference in contractibility between C ′ and C.15

Definition 5 (Strong Monotonicity). A cost function Γ is strongly monotone if there exists

ε > 0 such that, for all C,C ′ ∈ C such that C ′ ⊆ C,

Γ(C ′)− Γ(C) ≥ εL(C \ C ′) (16)

Analogously to the real-valued case, in Appendix B.3 we show that if Γ is Gateaux

differentiable in the appropriate sense, then it is strongly monotone when all its Gateaux

derivatives are strongly monotone real functions (see Equation 14).

All of the examples of cost functions that we have given so far are strongly monotone:

Proposition 3. Any (uncertain) cost of distinguishing actions is strongly monotone.

Proof. See Appendix A.3

The key assumption on the cost of distinguishing actions that implies strong monotonicity

is that the weighting function g is strictly positive. In particular, strong monotonicity fails

only if the cost of distinguishing some pairs of outcomes is zero, i.e., g(x, y) = 0 for a

strictly positive Lebesgue measure set of (x, y) ∈ X2, which is at odds with our premise that

distinguishing outcomes is a costly activity.

3.3 Optimal Contractibility Exists and is Coarse

Given any C ∈ C, we define its image as C(X) = {C(x)}x∈X and the cardinality of its image

as |C(X)|. The cardinality function returns the simple count of the number of elements in

15Equivalently, this can be seen as L being linear in the difference between the boundaries of C ′ and C,
i.e., linear in (δ′ − δ, δ − δ′).
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Figure 3: Coarse and Non-Coarse Contractibility

y = Recommendation

x
=

A
ct

io
n

C(X) = {[0, y]}y∈[0,1]

|C(X)| = 2ℵ0

Not Coarse

A. Continuum

y = Recommendation

x
=

A
ct

io
n

C(X) = {[0, 1
2 − 1

2k
]}∞k=1 ∪ {[0, 1]}

|C(X)| = ℵ0

Not Coarse

B. Countably Infinite

y = Recommendation

x
=

A
ct

io
n

C(X) = {{0}, [0, 1
2 ], [0, 1]}

|C(X)| = 3

Coarse

C. Finite

Note: Each panel shows an example contractibility correspondence. Panel A has the cardinality
of the continuum, 2ℵ0 , and Panel B has the cardinality of the set of natural numbers, ℵ0. These
examples are not coarse and therefore incompatible with the conclusion of Theorem 1. Panel C has
a finite cardinality. It is therefore coarse and compatible with the conclusion of Theorem 1.

C(X) when it is finite, the cardinality of the natural numbers ℵ0 when C(X) is countably

infinite, and the cardinality of the continuum 2ℵ0 when C(X) is uncountably infinite. Observe

that |C(X)| is a measure of the fineness (or coarseness) of the contractibility C. For example,

every time that C exhibits a region of perfect contractibility, i.e., C(x) = {x} for all x in

some open subset of X, then C(X) is an uncountably infinite set. Conversely, when |C(X)| is
finite, only finitely many sets of actions can be distinguished in any contract. In other words,

such a C corresponds to a legal and organizational apparatus that can prove a finite amount

of statements only. We say that a contractibility correspondence C is coarse if |C(X)| is
finite. Figure 3 illustrates both non-coarse and coarse correspondences.

We now state our main result regarding optimal contractibility. To do this, we de-

fine the maximum concavity of virtual surplus J̄xx = maxx,θ |Jxx(x, θ)|, the minimum com-

plementarity of virtual surplus
¯
Jxθ = minx,θ Jxθ(x, θ), and the maximum density of types

f̄ = maxθ f(θ). Finally, for every r ∈ R+, define ⌊r⌋ = max {n ∈ Z : n ≤ r}.

Theorem 1 (Optimal Contractibility is Coarse). An optimal contractibility correspondence

exists. If Γ is strongly monotone with constant ε > 0, then any optimal contractibility

correspondence C∗ is coarse:

|C∗(X)| ≤ 2 +

⌊
6xJ̄2

xxf̄

ε
¯
Jxθ

⌋
(17)

An immediate implication of the theorem is the optimality of a coarse contract. In
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particular, by Obedience, we have that ϕ(Θ) ⊆ δ
∗
(X) for any implementable—and therefore

any optimal—final action function ϕ. Thus, any optimal final action function takes at most

finitely many values and can be supported by a menu comprising an identical finite set of

recommendations and an accompanying finite set of payments for each recommendation.

Moreover, the proof of this result shows that it is optimal to set D∗ = {0}. Thus, it remains

only to characterize the optimal choice of a finite set of self-enforcing recommendations D

with a cardinality smaller than the bound provided by Theorem 1. We will discuss the

properties of optimal and coarse contracts in Section 3.5.

Theorem 1 crystallizes the idea that the spirit and the letter of optimal contracts must

differ. In fact, the optimally coarse contractibility correspondence associates each recom-

mended action in the spirit of the contract with a set of legally admissible actions in the

letter of the contract. This intentional imprecision is reminiscent of the vague language

(e.g., “best efforts,” “reasonable care,” and “good faith”) that is “commonplace in commer-

cial contracts” (Scott and Triantis, 2005, p. 196).

Main Idea of the Proof. We postpone the technical details of the proof of Theorem 1

until Section 5 and outline the key steps and logic here. Exploiting the relevant notions of

continuity of the objective and compactness of the choice domain, we show that there exists

an optimal contractibility correspondence. The main step in showing coarseness is establish-

ing that an optimal set of self-enforcing recommendations cannot include any accumulation

point (i.e., limit point of an infinite sequence). If it did, we show by construction that there

is a dominating, “coarsened” contractibility that removes all self-enforcing recommendations

in a neighborhood of any accumulation point. The intuition behind this result is that the

benefits of very precise contracting are an order of magnitude smaller than the costs. In

particular, the increase in value from contracting in such a neighborhood (versus the coars-

ened construction that removes the interior of the neighborhood) is third-order in the size of

the neighborhood, because the profit losses per agent are second-order and the measure of

affected agents is first-order. The increase in costs from the same operation is second-order

in the size of the neighborhood. In the context of costs of distinguishing, this is intuitive as

removing a neighborhood of radius t eliminates the need to distinguish 2t actions from 2t

actions, yielding a cost saving proportional to at least t2. The same logic implies that for

any coarse contractibility correspondence with |C̃(X)| > 2 +
⌊
6xJ̄2

xxf̄
ε
¯
Jxθ

⌋
we can construct an

improving contractibility correspondence C that satisfies the bound in Equation 17.
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3.4 Discussion of the Main Result

Before proceeding, we remark upon four notable points. The first two clarify the content of

Theorem 1.

Remark 2 (Coarseness Obtains for Arbitrarily Small Costs). Since ε in Definition 5 can

be made arbitrarily small by scaling the cost function, Theorem 1 implies that optimal

contractibility is coarse in the presence of arbitrarily small costs of contractibility. Formally,

if Γ is strongly monotone, then κΓ is strongly monotone for all κ > 0. Naturally, if κ is

small, then optimal contracts may specify a large, yet bounded, number of points. △

Remark 3 (Coarseness Obtains Despite the Potential “Concavity” of Costs). Optimal

coarseness would not be surprising if costs were assumed to be “convex” in some appro-

priate sense. However, as the following example shows, even when the marginal costs of

additional contractibility converge to zero and costs are therefore “concave,” cost functions

can nevertheless be strongly monotone and optimal contractibility coarse.

Example 4 (Costs of Distinguishing Have a “Concavity” Property). Suppose that the cost

of contractibility is a linear cost of distinguishing and x = 1. For any finite number of action

recommendations K ∈ N, we define CK as the contractibility correspondence induced by

the sets of self-enforcing recommendations D = {0} and D =
{

k−1
K−1

}K
k=1

, a uniform grid. A

simple calculation demonstrates that:

Γκ(CK) =
κ

2

(
1− 1

K − 1

)
(18)

which is a strictly concave function of the number of contractible actions K. Indeed, as

K → ∞, Γκ(CK) approaches an asymptote of κ/2. △

Thus, even when the marginal cost saving of removing contractibility at infinity is zero,

contracts can nevertheless be optimally coarse. △

We now make two remarks about when coarseness of contracts can fail to be optimal.

Remark 4 (Coarseness is About the Rate at Which Marginal Costs of Contractibility

Converge to Zero). The previous example shows that even when the asymptotic marginal

cost of complete contracts is zero, it is nevertheless not optimal to design one. As our proof

makes clear, this is because the economic benefits of more complete contracts are third-order

while the costs of writing them are second-order under strong monotonicity. To formalize

this intuition and clarify when coarseness can fail to obtain, consider the class of clause-based

costs which depend on C only via its image’s cardinality |C(X)|, i.e., Γ(C) = Γ̂(|C(X)|)
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for some Γ̂ : N ∪ {ℵ0, 2
ℵ0} → [0,∞]. Such costs are clearly not strongly monotone. Indeed,

whether such costs generate coarseness depends on the returns-to-scale in contracting that

they embody. With Proposition 13 in Appendix D.1, we formalize this by showing that

if Γ̂(K) − Γ̂(K − 1) either does not converge to zero or converges to zero at a rate that

is asymptotically less than order three, then contracts are optimally coarse. Conversely,

Proposition 14 establishes that if Γ̂(K) − Γ̂(K − 1) converges to zero at a rate that is

asymptotically greater than three, then contracts can be optimally complete. As a concrete

example of this, consider the following:

Example 5 (Power Marginal Costs). Suppose that the cost features increments that are

some power of the number of clauses written, i.e., Γ̂(K) − Γ̂(K − 1) = (K − 2)α for some

α ∈ R, which yields a cost Γ̂(K) =
∑K−2

k=1 k−α.16 This cost generates coarseness whenever

α < 3 and may otherwise fail to do so. △

This example highlights that with clause-based costs, which have been commonly applied

in the incomplete contracts literature, the prediction of coarseness hinges on α, which rep-

resents returns-to-scale in contracting. For example, Battigalli and Maggi (2002) consider

the cost Γ̂(K) = K, which corresponds to α = 0. By contrast, with costs motivated by

front-end costs in legal contracting, such as costs of distinguishing, coarseness obtains re-

gardless of assumptions on returns-to-scale. This is because such costs are guaranteed to

be asymptotically second-order as long as distinguishing any pair of actions has a strictly

positive cost. △

Remark 5 (Coarseness Obtains Because of the Front-End Nature of Costs). We have so far

argued that strong monotonicity is a weak property that is naturally satisfied by costs that

have an interpretation as “front-end” costs of distinguishing what is allowed from what is

not ex ante. We further justify this interpretation by showing that a natural and seemingly

minor modification of costs of distinguishing to make these costs be borne ex post at the

“back-end” renders optimal contractibility non-coarse. In contract law, Scott and Triantis

(2005) identify “back-end” costs as the “expected cost of litigation” (p. 196), i.e., the

expected cost of proving that the agent did (or did not) take an action they were supposed

to. To model this, for any recommendation function ξ : Θ → X, we define Fξ as the induced

distribution over recommendations in X. We can then define the back-end analog of a cost

of distinguishing, which differs only in that the principal pays for each recommendation in

proportion to how frequently it is assigned.

16To define this function for infinite cardinalities, we set Γ̂(2ℵ0) = Γ̂(ℵ0) =
∑∞

k=1 k
−α.
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Example 6 (Linear Back-End Costs). As a concrete example, consider the linear ex post

cost of distinguishing given by:

Γ(C, ξ) = κ

∫
X

∫
X\C(y)

dx dFξ(y) (19)

for κ > 0. This is identical to the linear cost of distinguishing except dy is replaced by

dFξ(y). This captures the interpretation that contracting costs are paid ex post, i.e., after

the agent is given a recommendation, and the principal considers the expected cost they will

pay at the time of choosing C. △

Proposition 15 in Appendix D.2 shows that optimal contractibility is not coarse for such a

back-end cost. This is despite the fact that for any fixed ξ with full range, Γ(C, ξ) is strongly

monotone. Intuitively, under an ex post cost, it is as if the principal incurs an additional

profit loss from contracting, affecting optimal contracts but not contractibility. Thus, there

is a qualitative distinction between front-end and back-end costs of contracting: frond-end

(fixed) costs naturally yield coarse contracts, back-end (variable) costs do not. △

3.5 Designing Coarse Contracts

Having established that optimal contracts are necessarily coarse under strong monotonicity,

we now study the problem of how a coarse contract can be optimally designed. Theorem 1

implies that any optimal contractibility correspondence can be represented via a coarse set of

self-enforcing recommendations: D = {x1, . . . , xK} where 0 = x1 < x2 < · · · < xK−1 < xK =

x. Define x = (x1, . . . , xK) and observe that the induced contractibility correspondence is

C(y) = [0, δx(y)], where:

δx(y) =
K∑
k=1

xkI[y ∈ (xk−1, xk]] (20)

and we adopt, for expositional simplicity, the notational convention that x0 = 0.

We first study how the optimal contract should be designed given a fixed D. Applying

Proposition 2 and using the specific structure of a coarse D, we arrive at the following

characterization of the optimal contract:

Proposition 4 (Coarse Contracts). Fix a coarse regular contractibility correspondence C

with self-enforcing recommendations D = {x1, . . . , xK}. Any optimal final action function is

almost everywhere equal to:

ϕ∗(θ) =
K∑
k=1

xkI[θ ∈ (θ̂k, θ̂k+1]] (21)
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where for k ∈ {2, . . . , K}, θ̂k is defined as the unique solution to J(xk, θ̂k) = J(xk−1, θ̂k) if

one exists, one if J(xk, θ) < J(xk−1, θ) for all θ ∈ Θ, and zero if J(xk, θ) > J(xk−1, θ) for

all θ ∈ Θ, with the normalization that θ̂1 = 0 and θ̂K+1 = 1.

Proof. See Appendix A.10.

The K contractible actions are priced such that the types separate into a K-interval

partition and the types in interval k purchase item k. The boundary types separating these

intervals, {θ̂k}Kk=1, are such that the principal is indifferent between the agent’s purchasing

adjacent items, taking into account the marginal effect of that type’s choices on the required

information rents.

3.6 What Should Be Contractible?

We now study how the principal chooses which final actions are contractible. Momentarily,

fix a finite set of self-enforcing recommendations D = {xk}Kk=1 and its corresponding vector

x = (xk)
K
k=1. As observed in Proposition 4, the optimal contract assigns action xk to types

θ ∈ (θ̂k, θ̂k+1]. The principal’s problem of choosing a contractibility correspondence with at

most K self-enforcing recommendations is given by:

max
{xk}K̃k=1:K̃≤K

J
(
δx
)
− Γ(δx) (22)

where J
(
δx
)
=
∑K

k=1

∫ θ̂k+1

θ̂k
J(xk, θ) dF (θ) and Γ(δx) are the principal’s total value and

cost, respectively.17 To establish first-order conditions for optimal contractibility, we now

supplement our assumptions on the cost of contractibility with differentiability:

Definition 6. We say that Γ is finitely differentiable if, for every K ∈ N, the map x 7→ Γ(δx)

is continuously differentiable at every vector x ∈ XK such that 0 = x1 < . . . < xK = x. In

this case, we let ∂
∂xk

Γ(δx) denote the corresponding partial derivatives.

Almost all of the examples of cost functions discussed in the previous sections are finitely

differentiable.

Proposition 5. Any uncertain cost of distinguishing actions is finitely differentiable provided

that λ ∈ (−∞,∞).

Proof. See Appendix A.11.

17Here we abuse notation by keeping the same symbol Γ to denote the section of the original cost function
at δ = 0, that is, Γ(δx) = Γ(0, δx).
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Finite differentiability allows us to derive a simple set of first-order conditions that opti-

mal contractibility, hence optimal contracts, must satisfy:

Proposition 6 (Optimal Contractibility). If Γ is strongly monotone and finitely differen-

tiable, then any optimal set of self-enforcing recommendations D
∗
= {x∗

1, . . . , x
∗
K∗} satisfies:

∫ θ̂k+1

θ̂k

Jx(x
∗
k, θ) dF (θ) =

∂

∂xk

Γ(δx∗) for k ∈ {2, . . . , K∗ − 1} (23)

Proof. See Appendix A.12.

The left-hand-side of Equation 23 says that the marginal benefit of changing a self-

enforcing recommendation xk is the average increase in virtual surplus over all types allocated

to that action. These marginal changes in virtual surplus take into account the direct effects

on revenues and costs (holding fixed the agent’s final action) as well as the indirect effects

on the rest of the contract via information rents. A second effect of changing xk, the change

in the marginal types θ̂k and θ̂k+1, is only second-order since the principal is indifferent

between allocating those types either of two adjacent self-enforcing recommendations. The

right-hand-side is simply the marginal cost of changing the self-enforcing recommendation

xk. Optimal contractibility balances these marginal benefits and costs.

Remark 6 (The Optimal Number Of Self-Enforcing Recommendations). We have solved

for optimal contractibility up to characterizing the optimal number of self-enforcing recom-

mendations K∗ and selecting among solutions to the first-order condition from Proposition

6 (if there are multiple). In this remark, we provide a practical method to find this number

that we employ in our applications: (i) find the solutions that solve the first-order conditions

for any fixed K ≤ B, where B is the bound from Theorem 1; (ii) compute the best such

solution for that K; and (iii) compare the values of the best solutions to find an optimal K∗.

First, for any K ∈ {2, . . . , B}, define the set of candidate optima with K self-enforcing

recommendations as those that solve the first-order conditions from Proposition 6:

OK :=
{
x ∈ XK : 0 = x1 < . . . < xK = x and Equation 23 holds

}
(24)

Second, define the following value function as the value of the best candidate optimum with

K self-enforcing recommendations:

V(K) = sup
x∈OK

J
(
δx
)
− Γ(δx) (25)

with the convention that V(K) = −∞ when OK = ∅. For K = K∗, this value coincides with

23



the value of the original problem; moreover, we know that K∗ ≤ B. Third, we have that K∗

solves the original problem if and only if

K∗ ∈ arg max
K∈{2,...,B}

V(K) (26)

which can be solved in linear time in the completeness bound, B. △

Thus, under strong monotonicity, we have reduced the question of optimal contractibility

design from choosing a regular contractibility correspondence C : X ⇒ X to choosing a single

number of self-enforcing recommendations K ∈ {2, . . . , B} and we have established the

structure of this problem along with a simple algorithm for its solution. In our applications

below, we demonstrate the usefulness of this procedure in solving for calculate optimal

contracts and contractibility under canonical assumptions.

4 Application to Employment Contracts

We now apply our results to study labor contracts with endogenous and costly contractibil-

ity. This is motivated by the fact that designing flexible pay structures requires front-end

costs (Prendergast, 1999). We find that the firm optimally sets a coarse wage schedule that

specifies a finite number of effort levels and corresponding payments, rather than fully flex-

ible piece rates. This finding rationalizes discrete performance levels and pay grades, pay

structures that are ubiquitous in practice (Bewley, 1999). We further find that the optimal

pay structure can be rigid in the face of certain kinds of productivity shocks while changing

discontinuously in the face of others. We show that incomplete information about worker

productivity generates more coarse contracts. Finally, we describe additional applications

to monopoly pricing and procurement.

4.1 Set-up: Labor Contracts with Imperfectly Contractible Effort

A worker (the agent) supplies labor to a firm (the principal). The worker’s payoff from

providing effort level e ∈ E = [0, 1] is

ũ(e, ϑ) = −a(1− ϑ)e− b
e2

2
(27)

where ϑ ∼ F̃ = U [0, 1] is the worker’s privately observed productivity, a > 0 is a parameter

that shifts productivity in a type-augmenting way, and b > 0 is a parameter that scales
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curvature in effort costs. High effort leads to more output for the firm, whose revenues are

π̃(e) = ce (28)

where c > 0 represents the type-neutral productivity of effort. We introduce the simplifying

assumption b ≤ c ≤ 2a to ensure that the full action space is relevant for the problem: the

principal will want to assign the highest effort to the highest productivity types and exclude

the lowest productivity types from working at the firm. The firm faces front-end costs when

writing the contract of the linear form introduced in Example 3:

Γ̃(C̃) = κ

∫
E

∫
E\C̃(ζ)

de dζ (29)

where C̃ : E ⇒ E is the contractibility correspondence and κ > 0. These are the costs of

creating a legal and organizational structure that make different levels of effort enforceable.

4.2 Optimal Contracts Specify Discrete Performance Levels

We now apply our theoretical results to solve the firm’s problem. As shown in Appendix

A.13, we can apply the change of variables x = 1 − e (“shirking”) and θ = 1 − ϑ (“unpro-

ductiveness”) to bring the model under the assumptions of Section 2. That is, all workers

prefer to shirk and unproductive workers prefer to do so to a greater extent. Since the linear

cost of distinguishing outcomes is strongly monotone, Theorem 1 implies that any optimal

contractibility correspondence is coarse. We can therefore optimize over a number K ∈ N of

distinct shirking levels and a vector x = (xk)
K
k=1 specifying those levels.

We next use the structure of payoffs to more sharply describe the optimal contract. The

principal’s virtual surplus function is

J(x, θ) = (2aθ + b− c)x− b
x2

2
(30)

Restricted to coarse contracts, the costs of contractibility are

Γ(δx) = κ
K−1∑
k=1

(1− xk+1)(xk+1 − xk) (31)

Proposition 6 implies that optimal shirking levels solve a first-order condition, balancing

the trade-off between the cost of specifying the contract ex ante and the benefits from

screening ex post. Specifically, for each interior self-enforcing recommendation indexed by
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k ∈ {2, K∗ − 1}, we have that:

∫ θ̂k+1

θ̂k

(2aθ + b(1− xk)− c) dθ − κ(−2xk + xk−1 + xk+1) = 0 (32)

where θ̂k = b
4a
(xk + xk−1) +

c−b
2a

are the types between which the principal is indifferent to

assign xk or xk−1. This equation reduces to a second-order difference equation that must be

satisfied by the optimal shirking levels:

(xk+1 + xk−1 − 2xk)

[
b2

16a
(xk+1 − xk−1)− κ

]
= 0 (33)

To solve for the optimal contract, we compute the solution of this difference equation (with

boundary conditions x0 = 0 and xK = 1) for each candidate K. Using the algorithm

described in Remark 6, we solve for the optimal K∗. This leads us to a closed-form charac-

terization of the optimal contract:

Proposition 7 (Optimal Contracts Feature Discrete Pay Grades). The principal offers the

following contract:

ek =
k − 1

K∗ − 1
w(ek) =

1

2

k − 1

K∗ − 1

(
b

2

k − 1

K∗ − 1
+ c

)
k ∈ {1, . . . , K∗} (34)

where the optimal number of pay grades, K∗, satisfies |K∗ − K̃| < 1 and

K̃ = 1 +
b2

12aκ
(35)

Moreover, K∗ decreases in a, increases in b, decreases in κ, and does not depend on c. If
b2

16aκ
> 1, then K∗ ≥ 3.

Proof. See Appendix A.13.

Under the optimal contract, only a finite number of effort levels and wage payments are

specified. We can interpret each contracted effort level as a “job” within the firm, associated

with a distinct “pay grade.” For each job, the spirit of the contract specifies ek and the

letter of the contract constrains the agent to exert equal or higher effort (C̃∗(ek) = [ek, 1]).

In Figure 4, we illustrate the optimal assignment of effort and wages as well as the optimal

contractibility. We compare this to the contract under perfect contractibility, which specifies

a smooth relationship between continuously-specified effort levels and wage.

The optimality of uniformly spaced effort levels arises due to symmetries in the benefits

and costs of more precise contracting. To understand the first property (symmetric benefits),
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Figure 4: Optimal Wage Contracts with Costly Contractibility
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Note: This figure illustrates the optimal contract from Proposition 7 with a = b = c = 1 and
κ = 1/32. The contract is finite with K∗ = 4. The first panel shows the assignment ϕ∗, in terms of
the original problem of effort allocation, the second panel shows the wage w∗, and the third shows
the contractibility correspondence C̃∗. In the first two panels, we also show the contract under
perfect contractibility (ϕP , wP ).

we observe that the second derivative Jxx = −b is constant as a function of (x, θ) and that

the principal’s optimal assignment absent contracting frictions induces a uniform distribution

over actions. Starting from perfect contractibility, the opportunity cost of removing perfect

contractibility in some interval of the action space is the same regardless of where that interval

is located. This is for two reasons. First, as virtual surplus is quadratic in this model, the

employer has an equal opportunity cost of forgoing differentiation for high-output versus

low-output workers. Second, because the optimal assignment function is linear, the same

measure of types is affected. The corresponding symmetry in costs arises because, for linear

costs of distinguishing, producing evidence to distinguish high and low effort levels costs the

same.

Interpretation: Pay Grades and Performance Bands. Our findings can help ratio-

nalize the ubiquity of pay grades that coarsely group workers to have common salaries. In his

survey of wage-setting practices for US manufacturing and services firms, Bewley (1999) ob-

serves that piece rates that continuously vary compensation with output are relatively rare.

A commonly mentioned problem with piece rates is the “cost of establishing the rates.” In-

stead, an alternative arrangement is a “grade and step system” whereby the full set of labor

tasks is segmented into discrete grades (job titles) and, within each grade, discrete steps

that correspond to different salaries. Our model rationalizes such a system as an optimal

response to even very small front-end costs of “establishing the rates.” This contrasts with

the prediction of the prediction of the model under perfect contractibility, a piece rate under

which total wages vary smoothly with effort.

27



A specific example of a coarse compensation scheme are the performance bands or, more

colloquially, “bonus buckets” used for analysts at investment banks. In these systems, em-

ployees are assigned a coarse performance grade (e.g., “meets expectations” versus “exceeds

expectations”) at the end of a pay period and assigned a fixed bonus salary that corresponds

to their grade. Through the lens of our model, performance grades may be an optimal com-

pensation scheme in the presence of even small costs of distinguishing pieces of evidence

regarding analysts’ performance. These costs may be especially natural if an agent’s contri-

bution toward a goal (e.g., executing a merger) is difficult to substantiate with hard, legally

admissible evidence.

Our result also implies that coarse compensation can emerge even when revenues net of

wage payments are arbitrarily large relative to front-end costs. This can be observed sharply

from the invariance of coarseness K∗ to the parameter c that scales revenue per unit of effort.

This helps justify why coarse compensation schemes might persist even at very profitable

enterprises, consistent with Bewley’s (1999) observations for firms of variable size and from

the ubiquity of vague performance standards in even high-value contracts.

4.3 Comparative Statics: Rigidity in Pay Structures and Wages

We now study how the optimal pay structure {ek, w(ek)}K∗
k=1 responds to changes in type-

augmenting productivity. To do this, we assume that parameters (a, b, c, κ) are such that

there is a unique K∗. This is true for almost all such vectors of parameters.18 Decreases

in the parameter a increase the returns to effort for all agents, and do so by more for

higher-productivity agents (i.e., those with higher ϑ). The sizes of productivity shocks have

markedly different implications for changes in the structure of pay:

Corollary 1. For every a, there exists a neighborhood A of a such that the optimal pay

structure is invariant to a′ for a′ ∈ A and there exists a different optimal pay structure for

a′ ̸∈ A.

Proof. See Appendix A.14

In response to shocks, both the number of wage levels and the wages within those levels

are unaffected by small enough changes. When type-augmenting productivity increases by

sufficiently small amounts, agents’ wages may increase, but only through discrete jumps

(“promotions”) across fixed steps (“jobs”). We illustrate such a scenario in the first row

18This follows because if there are multiple optimal values for K∗, then they must differ by one. Given this,
it is simple to show that, for a situation in which K∗ is not unique, an indifference equation of the following

form must hold: b2

24aκΛ(K
∗) = 1, where Λ is a polynomial. As we consider changes in a, we maintain the

assumption that b ≤ c ≤ 2a.
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Figure 5: How Wage Structures Respond to Productivity Changes
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Note: This figure illustrates the comparative statics of Corollary 1. We plot the wage structure
(w∗(e)) and the compensation for each agent (w∗(ϕ∗(ϑ))) for a baseline case (a = 1.0,K∗ = 4;
black solid line), a “small shock” with slightly higher productivity (a = 0.8,K∗ = 4; gray dotted
line), and a “large shock” with much higher productivity (a = 0.7,K∗ = 5; gray dashed line). We
fix b = c = 1 and κ = 1/32. The graph of transfers is truncated at ϑ = 0.3, as lower types are
excluded and receive no wages in all cases.

(Panel A) of Figure 5. In response to larger changes, the entire pay structure can change: that

is, the firm offers a different and potentially non-nested set of effort levels and corresponding

wages. That is, in response to large increases in type-augmenting productivity, “jobs” are

destroyed and created, and some individual workers may even be re-assigned to lower -wage

“jobs.” We illustrate such a scenario in the second row (Panel B) of Figure 5: in particular,

in the right panel, note that the new compensation schedule (gray dashed line) is sometimes

above and sometimes below the old schedule (black solid line). In this way, the model

generates discrete transitions in the structure of pay in the presence of a continuous cost of

determining the pay structure.

4.4 Incomplete Information Begets (More) Coarse Contracts

We next explore the interaction between incomplete information and incomplete contracts

in our setting. We do this by comparing the optimal pay structure under adverse selection

with the one under complete information. That is, the firm can perfectly determine the

productivity of their workers and propose an allocation that depends on their actual produc-
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tivity.19 However, the firm must use the same extent of contractibility for all worker types,

for example because the choice of contractibility must be made before the monopolist learns

the ability of their employee(s).20

Under perfect contractibility, the monopolist would implement the efficient outcome that

maximizes expected total surplus S = π + u and compensate the worker exactly what is

required to ensure individual rationality. Under costly contractibility, however, the princi-

pal may prefer to imperfectly differentiate to economize on the costs of writing a complex

contract. We find that the efficient allocation also features uniform tiers and that there are

more tiers than in the optimal allocation under incomplete information:

Corollary 2. In the efficient contract, the optimal set of effort levels is
{

k−1
K∗C−1

}K∗C

k=1
where

K∗C ≥ K∗. Moreover, K∗C satisfies |K∗C − K̃C | < 1, where K̃C = 2K̃ − 1.

Proof. See Appendix A.15.

This result implies that adverse selection results in both under-production and under-

differentiation of performance levels relative to the efficient setting. This arises in our en-

vironment because more incomplete information dulls the firm’s incentives to discriminate

between types of workers, which in turn dulls the employer’s incentive to contractually dif-

ferentiate different effort levels. In Appendix B.4, we show that this logic is more general

by providing conditions under which our coarseness bound from Theorem 1 is smaller under

incomplete information than under complete information.

4.5 Additional Applications

The screening problem solved in this section admits other interpretations. In these settings,

our model makes additional realistic predictions.

Procurement and Supply Chains. We can re-interpret our model such that the prin-

cipal is a purchasing firm, the agent is a supplier whose costs are given by Equation 27, and

the costly action is to produce an input of a given quality. Our result implies that a supplier

contract specifies a coarse menu of quality levels and corresponding payments. Our result

is consistent with Asanuma’s (1989) description of input sourcing by automobile and ma-

chinery manufacturers in Japan. Asanuma (1989) describes how purchasing firms segment

suppliers into three categories differentiated by the quality of their inputs and contract in

19In other words, we consider the complete-information setting where the feasible direct mechanisms satisfy
Obedience and Individual Rationality, but not necessarily Incentive Compatibility.

20As we show in Appendix B.4, there is an alternative interpretation in which the worker rather than the
firm has bargaining power (i.e., monopoly rather than monopsony).
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sharply different ways with suppliers in different categories. Through the lens of our model,

this coarsening can be understood as an optimal reaction to even small costs of contractually

distinguishing inputs of different qualities.21

Monopoly Pricing. As observed in Example 1, the Mussa and Rosen (1978) nonlinear

pricing model fits into our abstract setting. An interpretation is as follows. A monopolist

sells a service (e.g., a car or vacation house rental) that can be utilized to different extents.

The monopolist chooses both a menu of utilization levels and prices, as in the standard

nonlinear pricing problem. The monopolist faces a cost of higher utilization, akin to the

production cost in Mussa and Rosen (1978). Moreover, they must write a contract that

describes what levels of utilization by the buyers are acceptable. Contractibility is costly

because the monopolist has to describe the acceptable levels of utilization of the good—

for example, what constitutes a unit in “good” versus “bad” condition. Our results imply

that utilization is contracted upon in tiers: for instance, discrete grades of condition for a

car or vacation rental. This lines up with common practice. For example, the Europcar

terms of service for the United Kingdom specify discrete condition levels for car returns and

corresponding fees.22

5 Sketch of the Proof of Theorem 1

We sketch the proof of Theorem 1 in four parts. First, we establish the existence of an optimal

contractibility correspondence. Second, we bound the loss in value from set-valued pertur-

bations of contractibility. Third, we bound the cost savings from removing contractibility.

Finally, we combine these bounds to rule out infinite sets and construct an explicit bound

for the optimal extent of contractibility.

5.1 Existence of Optimal Contractibility

We begin by establishing the existence of an optimal contractibility correspondence. This

follows from showing that the value and cost of contractibility can be seen as continuous

and lower semi-continuous functions, respectively, of the sets of self-enforcing recommen-

dations in the Hausdorff topology. Given compactness of the set of sets of self-enforcing

recommendations in the Hausdorff topology, Weierstrass’ Theorem then implies existence:

21This force may operate in addition to the rationalization proposed by Malcomson (2013) related to
repeat transactions and relational contracting.

22As mentioned in the terms and conditions of the rental contract (Europcar, 2024), if the front bumper
of a Mini/Economy rental has a dent of less than 2cm, between 2cm and 5cm, between 5cm and 15cm, or a
dent larger than 15cm, then the corresponding fees are £0, £542, £694, £738.
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Lemma 1 (Existence). An optimal contractibility correspondence C∗ exists.

Proof. See Appendix A.4.

A simpler route to this result would be to directly assume Hausdorff (lower semi-)continuity

of the cost of contractibility when written as a function of the sets of self-enforcing recommen-

dations. However, the class of examples we have developed based on costs of distinguishing

are L1 continuous by inspection and, while we prove they are Hausdorff continuous in the

appropriate sense, we regard this consequence as non-obvious (see Proposition 8).

5.2 The Opportunity Cost of Coarsening Contractibility

We first bound the loss to the principal from perturbing any set of self-enforcing recommen-

dations D ∈ D to remove the contractibility of some actions. The collection of feasible sets of

self-enforcing recommendations D and the value J : D → R are defined at the end of Section

3.1. We remind that J̄xx = maxx,θ |Jxx(x, θ)|,
¯
Jxθ = minx,θ Jxθ(x, θ), and f̄ = maxθ f(θ).

Lemma 2. Consider any D ∈ D and any a, b ∈ D such that a < b. We have:

J (D)− J (D \ (a, b)) ≤ 3

2

J̄2
xxf̄

¯
Jxθ

(b− a)3 (36)

Moreover, if (a, b) ∩D ̸= ∅, then there exists c ∈ (a, b) ∩D such that:

J (D)− J (D \ (a, b)) ≤ 3

2

J̄2
xxf̄

¯
Jxθ

(b− a)
[
(c− a)2 + (b− c)2

]
(37)

Furthermore, if {a, c, b} are sequential, or D ∩ (a, c) = ∅ and D ∩ (c, b) = ∅, then

J (D)− J (D \ (a, b)) ≤ 3
J̄2
xxf̄

¯
Jxθ

(b− a)(c− a)(b− c) (38)

Proof. See Appendix A.5.

The first statement says that the opportunity cost of removing all points of contractibility

within an interval (a, b) is third-order in the length of that interval. The next two statements

refine this bound when there is a third point of contractibility c ∈ (a, b) and furthermore when

the three points of interest are isolated. All three bounds share the following comparative

statics: they loosen when J has higher concavity, when J has lower supermodularity, and

when the type density is more concentrated.
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Figure 6: Illustrating the Payoff Loss from Changing an Agent’s Allocation (Lemma 2)
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Note: This figure illustrates where the bound on payoffs used in the proof of Lemma 2 comes from.
The black curves denote the virtual surplus function for three types θ0 < θ1 < θ2. Actions (a, b, c)
are contractible (i.e., among the self-enforcing recommendations) and z is some point in [c, b], from
Taylor’s remainder theorem. The orange line is tangent to J(·, θ1) at x = c.

To provide intuition, we sketch the derivation of the first claim (Equation 36). Exploiting

the fact that allocations conditional on any level of contractibility solve a pointwise program

(see Equation 13), we write

J (D)− J (D \ (a, b)) =
∫
Θ

(J(ϕ∗(θ), θ)− J(ϕ∗′(θ), θ)) dF (θ) (39)

where ϕ∗ and ϕ∗′ respectively denote the optimal final action functions under each level of

contractibility. We next observe, using our characterization of the optimal contract (Propo-

sition 2), that ϕ∗ ̸= ϕ∗′ only for types such that the actions ϕ(θ) or ϕ(θ) (from Equation 10,

defined relative to D), were within (a, b). The third-order bound follows from two steps: (i)

showing that this set of affected types has measure proportional to b − a and (ii) showing

that the payoff losses for each such type are bounded by something proportional to (b− a)2.

For the first step, we observe that a necessary condition for a type θ to be affected by the

removal of the interval (a, b) is that ϕP (θ) ∈ (a, b): that is, the principal would like (absent

imperfect contractibility) to allocate these agents an action between a and b. This set of

types is {θ : ϕP (θ) ∈ (a, b)} and has a large measure if ϕP is very flat (i.e., nearby types map

to similar actions) or if the type density is very large. We bound the inverse slope of ϕP by
J̄xx

¯
Jxθ

(by the implicit function theorem and the inverse function theorem) and the maximum

type density by f̄ . Together, this contributes a term (b− a) J̄xx
¯
Jxθ

f̄ to the bound.
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For the second step, we bound the payoff loss for the principal from perturbing the

allocation of any affected type θ. The calculation is visualized in Figure 6 and explained

in detail below. We start by expressing J(·, θ) as second-order around ϕ∗(θ) using Taylor’s

remainder theorem. In the figure, we illustrate these calculations for a given type θ1 such

that ϕ∗(θ1) = c. In this case, it is optimal under the variation to allocate this type to the

action x = b. The second-order term in Taylor’s remainder theorem is bounded above by

the red term 1
2
Jxx(b − a)2, using the global bound for the second derivative and the fact

that b − c < b − a. We next consider the first-order term of the quadratic representation.

This has coefficient Jx(ϕ
∗(θ), θ). If it were the case that ϕ∗(θ) = ϕP (θ), this term would

be zero by the envelope theorem. But, more generally, we know only that ϕ∗(θ) ∈ (a, b)

and ϕP (θ) ∈ (a, b). To proceed, we apply Taylor’s remainder theorem once more to Jx(·, θ)
around ϕP (θ). Exploiting the fact that Jx(ϕ

P (θ), θ) = 0, we obtain that Jx(ϕ
∗(θ), θ) is linear

in ϕ∗(θ)−ϕP (θ), with a slope that is bounded above by Jxx. This contributes the blue term

in Figure 6, which is bounded above by Jxx(b− a)2. Putting these two bounds together, we

obtain the total bound of 3
2
J̄xx(b− a)2.

5.3 The Cost Savings of Coarsening Contractibility

We now leverage strong monotonicity of costs to understand the cost savings from removing

contractibility. First, we observe that strong monotonicity implies that, for any optimal

contractibility correspondence, δ equals zero (except perhaps at x):

Lemma 3. Suppose that Γ is strongly monotone. If C∗ is an optimal contractibility corre-

spondence, then δ∗(X) ⊆ {0, x}.

Proof. See Appendix A.6.

Strong monotonicity implies that any δ that does not satisfy the property in Lemma 3

must yield a strictly positive cost and therefore, as the value J depends only on D, must be

suboptimal. There are two δ functions compatible with the property in Lemma 3: δ = 0 and

δ(x) = x I[x = x]. As the L1−distance between these two functions is zero, L1−continuity of

Γ implies that Γ(δ, δ) = Γ(0, δ) for any optimal contractibility correspondence. This shows

that the cost component of the principal’s payoff depends only on the set of self-enforcing

recommendationsD. Thus, with some abuse of notation, we henceforth write Γ(D) = Γ(0, δ).

We next show that strong monotonicity of Γ places lower bounds on the asymptotic

marginal costs of removing contractibility.
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Lemma 4 (Asymptotic Cost Savings). Suppose that Γ is strongly monotone with constant

ε > 0. We have that:

lim inf
m

Γ(D)− Γ(D \ (am, bm))
(xm − am)(bm − xm)

≥ ε (40)

for all D ∈ D, accumulation points x ∈ D, and sequences {am, xm, bm}∞m=1 ⊆ D such that

xm ∈ (am, bm) and D ∩ (am, bm) → {x}, where the limit is in the topological sense.23

Proof. See Appendix A.7.

This result formalizes the sense in which there are second-order costs of perfect con-

tractibility. To illustrate this most clearly, consider an x and D such that there is perfect

contractibility in a neighborhood around x, i.e., Bt(x) ⊂ D for all sufficiently small t > 0,

where Bt(x) denotes the open ball centered at x and with radius t. In this construction, x

is an (interior) accumulation point that the principal can precisely differentiate from all of

its neighbors. We can take a sequence {tm}∞m=0 such that tm → 0 and construct sequences

am = x− tm and bm = x+ tm. In this case, the operation described in Lemma 4 is to remove

a sequence of shrinking balls centered around x. A cost Γ satisfies Equation 40 if, in such a

scenario, the cost of removing these balls is asymptotically bounded by εt2m.

Lemma 4 generalizes this idea to also discipline the cost of precise contracting around

non-interior accumulation points. For example, the set D = {1−2−k}∞k=0∪{1} has an empty

interior, but 1 is an accumulation point which the principal can distinguish from any close

action 1 − 2−k, for arbitrarily large k. Similarly, if D were the Cantor set, then all of its

elements are non-interior accumulation points.

We can give a simple intuition for why strongly monotone costs imply this asymptotic

property. To illustrate this most concretely, suppose that Γ is the linear cost of distinguishing

of Example 3, in which case ε = κ and the cost coincides with the area above δ. Intuitively,

removing contractibility in a ball of radius t removes the need to distinguish 2t actions from

2t other actions. This yields a cost saving of κ2t× 2t = κ4t2.

Figure 7 geometrically illustrates our more general bounds on marginal cost under the

linear cost with κ = 1. Beginning with any D and corresponding δD (black solid line), we

remove all self-enforcing recommendations in (am, bm) to construct δD\(am,bm) (red dotted

line). To derive our bound, we also construct δm (blue dashed line) by deleting (am, bm)

but retaining xm for some xm ∈ D. Our goal is to bound the cost savings from removing

(am, bm), equal to the area shaded in the figure with left hatches. We calculate the difference

23The upper topological limit of a sequence of sets {Am}∞m=1 ⊆ X is the set of points x ∈ X such that
every neighborhood intersects infinitely many sets Am. The lower topological limit is the set of points such
that every neighborhood intersects all but finitely many sets Am. The topological limit exists if the upper
and lower topological limits are equal (Definition 3.80 in Aliprantis and Border, 2006).
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Figure 7: Illustrating the Cost Savings from Coarsening a Contract (Lemma 4)

am xm bm
x

am

xm

bm

δ(
x

) δD

δm

δD\(am,bm)

Bound, (bm − xm)(xm − am)

Γ(D)− Γ(D \ (am, bm))

Note: This figure graphically illustrates the implications of strong monotonicity (Lemma 4) for
linear costs of distinguishing with κ = 1 (Example 3).

in costs between δm and δD\(am,bm), equal to the rectangle which is shaded in the figure

with right hatches. The rectangle has side lengths bm − xm and xm − am, and therefore area

(bm−xm)(xm−am). Thus, Γ(D)−Γ(D\(am, bm)) ≥ (xm−am)(bm−xm) and the implication

of Lemma 4 holds with ε = 1.

5.4 Establishing Coarseness

We now combine the arguments above and establish that there exists some K∗ ∈ N such that

any optimal set of self-enforcing recommendations, which must exist by Lemma 1, is finite

with |D∗| ≤ K∗. We first show that if a set of self-enforcing recommendations in infinite,

then it cannot be optimal.

Lemma 5 (Suboptimality of Infinite Contracts). Suppose that Γ is strongly monotone. If

D ∈ D is an infinite set, then it is not an optimal set of self-enforcing recommendations.

Proof. See Appendix A.8.

To prove this result, we leverage three core arguments that rule out the possibility that

an optimal set of self-enforcing recommendations is—within some neighborhood of an accu-

mulation point—an interval, an uncountably infinite but nowhere dense set, or a countably

infinite set. The intuition for this result is most easily seen in the case of intervals. Lemma 2

established that eliminating an interval of length t of contractible outcomes has a cost that

is proportional to t3. Lemma 4 established that, under strong monotonicity, eliminating an

interval of radius t has (in the limit of small t) a cost that is proportional to t2. Thus,
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for small enough t, the benefit of eliminating contractability exceeds the cost of keeping

it. Therefore, an optimal D cannot contain an interval. Similar variational arguments that

leverage different implications of Lemmas 2 and 4 rule out uncountably infinite but nowhere

dense sets and countably infinite sets.

To extend this argument to rule out any infinite set, we can place any such set into one

of four mutually exclusive categories: a perfect set that is somewhere dense, a perfect set

that is nowhere dense, a non-perfect set that is uncountably infinite, and a non-perfect set

that is countably infinite. By applying the Cantor-Bendixson theorem, we can show that

each of these infinite sets must contain a neighborhood within which the set of self-enforcing

recommendations reduces to one of the three cases from the previous paragraph. This yields

the conclusion that an optimal set of self-enforcing recommendations cannot be infinite.

We now leverage the finiteness of an optimal set of self-enforcing recommendations to

derive an explicit upper bound on the number of such recommendations.

Lemma 6 (The Fineness Bound). If Γ is strongly monotone with constant ε > 0, then any

optimal set of self-enforcing recommendations satisfies |D∗| ≤ 2 +
⌊
6xJ̄2

xxf̄
ε
¯
Jxθ

⌋
.

Proof. See Appendix A.9.

We prove this by using our explicit bound on the payoff gains from more complete con-

tracts from Lemma 2. If more than this many actions were contractible, we show that

eliminating at least one self-enforcing recommendation would be payoff improving.

Finally, we translate this result into the form stated in Theorem 1. Observe that if D
∗

is finite, then so too is δ
∗
(X). We have also already shown that δ∗(X) ⊆ {0, x} ⊆ δ

∗
(X).

Thus, since |C(X)| = |δ∗(X)| in this case, Lemma 6 implies the bound of Theorem 1.

6 Conclusion

In this paper, we introduce a model of contractibility design. Our analysis has two premises.

The first is that contracts are only enforceable to the extent that the principal can prove that

the agent deviated from the terms of the contract. The second is that the codification and

generation of evidence that can be used to provide such proof entails front-end costs. We

show that a large class of front-end costs satisfy a monotonicity property that we call strong

monotonicity. Under this property, optimal contracts are coarse. We show how the agents’

preferences, the principal’s preferences, and the incompleteness of information affect the

structure and potential coarseness of contracts. We argue that our model generates insights

into the nature of employment contracts, procurement contracts, and monopoly pricing.
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We conclude this section by mentioning other settings in which our general framework,

methods, and results can be applied. A first class of applications includes many settings in

which (monotone) partitions of information are the economic object of interest, like certain

models of costly information acquisition and costly certification (e.g., Gul, Pesendorfer, and

Strzalecki, 2017; Ellis, 2018; Zapechelnyuk, 2020). Monotone partitions are nested as the

special case of regular contractibility correspondences when Transitivity is strengthened to

the following Symmetry property: for all x, y ∈ X, if x ∈ C(y), then C(x) = C(y). When

the principal is restricted to choose a monotone partition in this new feasible set, our main

coarseness result (Theorem 1) still holds, with a possibly different finite bound. Mapped to

the problems described above, our analysis gives conditions under which optimal information

structures take the striking form of a finite partition.

An additional direction for further research is applying our analysis to models of costly

persuasion and delegation. These settings, when restricted to deterministic and monotone

mechanisms, also feature monotone partitions (equivalently, closed sets) as the choice vari-

able (Kolotilin and Zapechelnyuk, 2025). However, unlike those described above, these

settings feature misalignment in incentives between the two parties that would complicate

the mapping from partitions to the designer’s value (i.e., the analog of our Equation 13).

Analyzing such a model would require new bounds on the loss in value from perturbations

of contractibility (our Lemma 2), but the general approach of our analysis would apply.

A second class of related problems draws from the literature on mechanism design with

evidence about agents’ types (see e.g., Green and Laffont, 1986; Hart, Kremer, and Perry,

2017), rather than their actions. Part of this literature studies the problem of designing

optimal mechanisms given a fixed correspondence describing the set of types M(θ) that each

type θ ∈ Θ can mimic. For example, Krähmer and Strausz (2024) study a model in which

agents can only mimic agents of a higher type, i.e., M(θ) = [θ, 1], and Sher and Vohra (2015)

study a discrete-type model with a more general correspondence. It would be interesting

to study the costly design of such reporting constraints and the resulting implications for

optimal contracts in future research.
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Appendix to Contractibility Design by
Corrao, Flynn, and Sastry

A Proofs

A.1 Proof of Proposition 1

(If). Let C : X ⇒ X be a regular contractibility correspondence and define δ(y) =

minC(y) and δ(y) = maxC(y) for all y ∈ X. By the fact that C is closed-valued, δ

and δ exist. By monotonicity, we have that δ and δ are increasing functions. By reflexivity,

we know that y ≥ δ(y) and y ≤ δ(y) for all y. Moreover, by Lemma 17.29 in Aliprantis and

Border (2006), δ is lower semi-continuous and δ is upper semi-continuous.

We now show that C(y) = [δ(y), δ(y)]. Assume by contradiction there exists some y ∈ X

and x ∈ [δ(y), δ(y)] such that x /∈ C(y). Consider first the case where x < y. By the definition

of δ, δ(y) ∈ C(y) and δ(y) < x. As x < y, by monotonicity, we have that C(x) ≤SSO C(y).

Thus, as x ∈ C(x) and δ(y) ∈ C(y), we know that max{x, δ(y)} = x ∈ C(y). This is a

contradiction. Consider now the case where y < x. Again, δ(y) ∈ C(y) and x < δ(y). By

monotonicity, we have that min{x, δ(y)} = x ∈ C(y). This is a contradiction.

We next show parts (ii), (iii), and (iv). Fix x, y ∈ X and assume that x ∈ [δ(y), δ(y)),

which implies x ∈ C(y). We start with part (ii), and mirror the argument for part (iii).

Suppose x < y. As C is monotone, we know that δ(x) ≤ δ(y). Suppose by contradiction

that δ(x) < δ(y). But then, given the other properties of δ, for all z ∈ (δ(x), δ(y)) we would

have that z ∈ C(x) but z /∈ C(y), which contradicts transitivity. For part (iii), consider the

same scenario but reversed. Suppose x > y. As C is monotone, we know that δ(x) ≥ δ(y).

Imagine this held at strict inequality. Then there would exist z ∈ (δ(y), δ(x)) such that

z ∈ C(y) and z /∈ C(x), while y ∈ C(x). This violates transitivity. It is immediate that

δ(0) = 0 by excludability as C(0) = {0}.

(Only If). Fix δ and δ with the properties in Proposition 1. We show that C(y) =

[δ(y), δ(y)] is regular. C is reflexive because of (i), closed by construction, and monotone

because δ, δ are monotone. To show transitivity, consider x ∈ C(y) and, first, the case x < y.

From (ii), we have δ(x) = δ(y). Moreover, from monotonicity, δ(x) ≤ δ(y). Therefore,

C(x) ⊆ C(y). Next, consider the case where x > y. From (iii), we have δ(x) = δ(y).

Moreover, from monotonicity, δ(x) ≥ δ(y). Therefore, C(x) ⊆ C(y). Moreover, if x = y,

clearly C(x) ⊆ C(y). Given that these arguments hold for any x, this shows transitivity.

Finally, as δ(0) = δ(0), we have that C(0) = {0}, establishing excludability.
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A.2 Proof of Proposition 2

We prove the result in three parts. First, we present a characterization of implementable

allocations. Second, we use this characterization to derive the principal’s control problem.

Third, we solve this control problem for the optimal contract.

Part 1: Implementation

We begin by establishing a general taxation principle with partial contractibility. Given a

regular contractibility correspondence C, we say that T : X → R̄ is monotone with respect

to C if T (y) ≥ T (x) for all x, y ∈ X such that x ∈ C(y). We now show monotonicity of the

tariff with respect to C is necessary and sufficient for implementability (Definition 4).

Lemma 7 (C-Monotone Taxation Principle). Fix a regular contractibility correspondence

C. A final action function ϕ is implementable given C if and only if there exists a tariff

T : X → R̄ that is monotone with respect to C and such that:

ϕ(θ) ∈ argmax
x∈X

{u(x, θ)− T (x)} (41)

and u(ϕ(θ), θ)− T (ϕ(θ)) ≥ 0 for all θ ∈ Θ. In this case, ϕ is supported by ξ = ϕ and T .

Proof. (Only if) We begin by proving the necessity of the existence of a monotone tariff

with respect to C. Suppose that ϕ is implementable. It follows that there exists (ξ, T ) that

support ϕ. In particular, observe that (O) implies that ϕ(θ) ∈ C(ξ(θ)) for all θ ∈ Θ. Next

define T̂ : X → R̄ as:

T̂ (x) = inf
y∈X

{T (y) : x ∈ C(y)} (42)

We next show that ϕ is also supported by (ϕ, T̂ ). By (O) of (ϕ, ξ, T ), we have

u(ϕ(θ), θ) ≥ u(x, θ) (43)

for all x ∈ C(ϕ(θ)) ⊆ C(ξ(θ)) (by transitivity) and for all θ ∈ Θ, yielding (O) of (ϕ, ϕ, T̂ ).

By (IR) of (ϕ, ξ, T ) and the definition of T̂ , we have

u(ϕ(θ), θ)− T̂ (ϕ(θ)) ≥ u(ϕ(θ), θ)− T (ξ(θ)) ≥ 0 (44)

for all θ ∈ Θ, yielding (IR) of (ϕ, ϕ, T̂ ). Next, assume toward a contradiction that (ϕ, ϕ, T̂ )

does not satisfy (IC), that is, there exist θ ∈ Θ and y ∈ X such that

max
x∈C(y)

u(x, θ)− T̂ (y) > u(ϕ(θ), θ)− T̂ (ϕ(θ)) (45)
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By the definition of T̂ , there exists a sequence zn ∈ X such that y ∈ C(zn) for all n and

T (zn) ↓ T̂ (y). Thus, there exists n large enough such that

max
x∈C(zn)

u(x, θ)− T (zn) ≥ max
x∈C(y)

u(x, θ)− T (zn)

> u(ϕ(θ), θ)− T̂ (ϕ(θ)) ≥ u(ϕ(θ), θ)− T (ξ(θ))

= max
x∈C(ξ(θ))

u(x, θ)− T (ξ(θ))

(46)

The first inequality follows from C(y) ⊆ C(zn) since y ∈ C(zn). The second strict inequality

follows from Equation 45 and the fact that T (zn) ↓ T̂ (y). The third inequality follows from

the construction of T̂ . The final equality follows as (ϕ, ξ, T ) satisfies (O). However, the

previous inequality yields a contradiction of (IC) of (ϕ, ξ, T ), proving that (ϕ, ϕ, T̂ ) satisfies

(IC). This shows that (ϕ, ϕ, T̂ ) is implementable, hence that Equation 41 holds and that

u(ϕ(θ), θ)− T (ϕ(θ)) ≥ 0 for all θ ∈ Θ.

Finally, we argue that T̂ is monotone with respect to C. Fix x, y ∈ X such that y ∈ C(x).

By Transitivity of C we have

{x̂ ∈ X : x ∈ C(x̂)} ⊆ {x̂ ∈ X : y ∈ C(x̂)} (47)

yielding that T̂ (y) ≤ T̂ (x), as desired.

(If) We now establish sufficiency. Suppose that there exists a tarrif T : X → R̄ that is

monotone with respect to C and such that Equation 41 holds and u(ϕ(θ), θ)− T (ϕ(θ)) ≥ 0

for all θ ∈ Θ. We will show that (ϕ, ϕ, T ) is implementable. (IR) is immediately satisfied.

Next, we show that (IC) is satisfied. Suppose, toward a contradiction, that it were not. That

is, there exist θ ∈ Θ, y ∈ X, and x ∈ C(y) such that

u(x, θ)− T (y) > max
x̂∈C(ϕ(θ))

u(x̂, θ)− T (ϕ(θ)) ≥ u(ϕ(θ), θ)− T (ϕ(θ)) (48)

But then, we have the following contradiction of monotonicity of T in C:

u(x, θ)− T (y) > u(ϕ(θ), θ)− T (ϕ(θ)) ≥ u(x, θ)− T (x) =⇒ T (x) > T (y) (49)

where the second inequality uses the fact that ϕ(θ) solves the program in Equation 41.

Finally, we show that (O) is satisfied. Toward a contradiction, assume that there exists

θ ∈ Θ and x ∈ C(ϕ(θ)) such that:

u(x, θ) > u(ϕ(θ), θ) (50)
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However, by monotonicity of T in C, we know that T (ϕ(θ)) ≥ T (x). Thus,

u(x, θ)− T (x) > u(ϕ(θ), θ)− T (ϕ(θ)) (51)

yielding a contradiction to IC, which we just showed. This proves sufficiency.

Finally, the fact that any implementable final action function can be implemented as part

of an allocation (ϕ, ϕ, T ) follows by the construction in the necessity part of our proof.

With this taxation principle in hand, we now characterize implementation:

Lemma 8 (Implementation). A final action function ϕ is implementable under C = [δ, δ],

with self-enforcing recommendation sets D = δ(X) and D = δ(X), if and only if it is

monotone increasing and such that: (i) if agent preferences are monotone increasing, then

ϕ(Θ) ⊆ D, (ii) if preferences are monotone decreasing, then ϕ(Θ) ⊆ D. Moreover, ϕ is

supported by ξ = ϕ and tariff:

T (x) = T (0) + u(x, ϕ−1(x))−
∫ ϕ−1(x)

0

uθ(ϕ(s), s) ds (52)

where ϕ−1(s) = inf{θ ∈ Θ : ϕ(θ) ≥ s}.

Proof. (Only If for First Part) If ϕ is implementable, then there exists (ξ, T ) that support

ϕ. By Lemma 7, we may take that ξ = ϕ. By (IC) and Lemma 7, there exists a transfer

function t : Θ → R given by t(θ) = T (ϕ(θ)) such that u(ϕ(θ), θ) − t(θ) ≥ u(ϕ(θ′), θ) − t(θ′)

for all θ, θ′ ∈ Θ. As u is strictly single-crossing, Proposition 1 in Rochet (1987) then implies

that ϕ is monotone. Without loss of generality, consider the case with monotone increasing

preferences and toward a contradiction suppose that ϕ(θ) ̸∈ D. Deviating to δ(ϕ(θ)) > ϕ(θ)

is a strict improvement for the agent. Thus, if ϕ is implementable, then it is monotone, and

ϕ(Θ) ⊆ D (or ϕ(Θ) ⊆ D with montone decreasing preferences) holds.

(If For First Part) Without loss of generality, we again prove this part for the case

with monotone increasing preferences. Now suppose that ϕ(θ) ∈ D holds for all θ ∈ Θ and

ϕ is monotone increasing. Define the function t : Θ → R as

t(θ) = Z + u(ϕ(θ), θ)−
∫ θ

0

uθ(ϕ(s), s) ds (53)

for some Z ≤ 0, and the tariff T : X → R as

T (x) = inf
θ′∈Θ

{t(θ′) : x ∈ C(ϕ(θ′))} (54)

46



Fix x, y ∈ X such that x ∈ C(y). By Transitivity, for all θ ∈ Θ, if y ∈ C(ϕ(θ)), then

x ∈ C(ϕ(θ)). This shows that

{θ ∈ Θ : y ∈ C(ϕ(θ))} ⊆ {θ ∈ Θ : x ∈ C(ϕ(θ))} (55)

Therefore, applying the construction of T , T (y) ≥ T (x). Thus, T is monotone with respect

to C.

As T is monotone with respect to C, if we can show that ϕ(θ) ∈ argmaxx∈X{u(x, θ) −
T (x)} and u(ϕ(θ), θ)−T (ϕ(θ)) ≥ 0, then we have shown by Lemma 7 that ϕ is implementable.

We start with the second condition. For every θ ∈ Θ, we have

u(ϕ(θ), θ)− T (ϕ(θ)) ≥ u(ϕ(θ), θ)− t(θ) =

∫ θ

0

uθ(ϕ(s), s) ds− Z (56)

Note that the right-hand side of this last equation is monotone increasing in θ since it is

continuously differentiable with derivative uθ(ϕ(θ), θ) =
∫ ϕ(θ)

0
uxθ(z, θ) dz ≥ 0 for all θ ∈ Θ,

owing to the fact that u is supermodular. Given that Z ≤ 0, we have that u(ϕ(θ), θ) −
T (ϕ(θ)) ≥ 0 for all θ ∈ Θ.

We are left to prove that (ϕ, T ) satisfy Equation 41. We first prove that, for all θ, θ′ ∈ Θ:

u(ϕ(θ), θ)− t(θ) ≥ max
x∈C(ϕ(θ′))

u(x, θ)− t(θ′) (57)

This is a variation of the standard reporting problem under consumption function ϕ and

transfers t, where each agent, on top of misreporting their type, can also consume everything

allowed by C. Violations of this condition can take two forms. First, an agent of type θ

could report type θ′ and consume x = ϕ(θ′). We call this a single deviation. Second, an

agent of type θ could report type θ′ and consume x ∈ C(ϕ(θ′)) \ {ϕ(θ′)}. We call this

a double deviation. Under our construction of transfers t and monotonicity of ϕ, by a

standard mechanism-design argument, there is no strict gain to any agent of reporting θ′

and consuming x = ϕ(θ′). Thus, there are no profitable single deviations under (ϕ, t).

We now must rule out double deviations. Suppose that θ imitates θ′ and plans to take

final action x ̸= ϕ(θ′). As ϕ(θ′) ∈ D (in the monotone increasing case), x < ϕ(θ′). But in

that case, simply taking action ϕ(θ′) is better. But then this is a single deviation, which we

have ruled out. The same logic applies in the monotone decreasing case.

To derive the tariff, we can simply set T (x) = t(ϕ−1(x)). This yields the claimed formula.
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Part 2: Control Problem

We now use this characterization of implementation to turn the principal’s problem into an

optimal control problem:

Lemma 9. When agents have monotone increasing preferences, any optimal final action

function solves:

J (D) = max
ϕ

∫
Θ

J(ϕ(θ), θ) dF (θ)

s.t. ϕ(θ′) ≥ ϕ(θ), ϕ(θ) ∈ D, θ, θ′ ∈ Θ : θ′ ≥ θ

(58)

When agents have monotone decreasing preferences, replace D with D.

Proof. We begin by eliminating the proposed allocation and transfers from the objective

function of the principal. From the proof of Lemma 8, we have that transfers for any

incentive compatible triple (ξ, ϕ, t) are given by:

t(θ) = Z + u(ϕ(θ), θ)−
∫ θ

0

uθ(ϕ(s), s) ds (59)

for some constant Z ∈ R. Thus, any ξ that supports ϕ leads to the same principal payoff

and can therefore be made equal to ϕ without loss of optimality. Moreover, we know that ϕ

being incentive compatible is equivalent to ϕ being monotone increasing and ϕ(θ) ∈ D.

Plugging in the expression (59), we can simplify the expression for the principal’s total

transfer revenue as the following:∫
Θ

t(θ) dF (θ) =

∫
Θ

(
Z + u(ϕ(θ), θ)−

∫ θ

0

uθ(ϕ(s), s) ds

)
dF (θ)

=

∫
Θ

(Z + u(ϕ(θ), θ)) dF (θ)−
∫ 1

0

∫ θ

0

uθ(ϕ(s), s) ds dF (θ)

(60)

Using this expression for total transfer revenue, and the characterization of implementation

from Lemma 8, we write the principal’s problem as

max
ϕ,Z

∫
Θ

(
π(ϕ(θ), θ) + Z + u(ϕ(θ), θ)−

∫ θ

0

uθ(ϕ(s), s) ds

)
dF (θ)

s.t. ϕ(θ′) ≥ ϕ(θ), ϕ(θ) ∈ D ∀θ, θ′ ∈ Θ : θ′ ≥ θ

u(ϕ(θ), θ)−
(
Z + u(ϕ(θ), θ)−

∫ θ

0

uθ(ϕ(s), s) ds

)
≥ 0 ∀θ ∈ Θ

(61)

We further simplify this by applying integration by parts on the double integral of uθ(ϕ(s), s)
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over θ and s:∫ 1

0

∫ θ

0

uθ(ϕ(s), s) ds dF (θ) =

[
F (θ)

∫ θ

0

uθ(ϕ(s); s) ds

]1
0

−
∫ 1

0

F (θ)uθ(ϕ(θ), θ) dθ

=

∫ 1

0

(1− F (θ))uθ(ϕ(θ), θ) dθ

=

∫ 1

0

(1− F (θ))

f(θ)
uθ(ϕ(θ), θ) dF (θ)

(62)

Plugging into the principal’s objective, we find that the principal solves:

max
ϕ,Z

∫
Θ

(J(ϕ(θ)) + Z) dF (θ)

s.t. ϕ(θ′) ≥ ϕ(θ), ϕ(θ) ∈ D ∀θ, θ′ ∈ Θ : θ′ ≥ θ

u(ϕ(θ), θ)−
(
Z + u(ϕ(θ), θ)−

∫ θ

0

uθ(ϕ(s), s) ds

)
≥ 0 ∀θ ∈ Θ

(63)

It follows that it is optimal to set Z ∈ R as large as possible such that:

V (θ) = u(ϕ(θ), θ)−
(
Z + u(ϕ(θ), θ)−

∫ θ

0

uθ(ϕ(s), s) ds

)
≥ 0 ∀θ ∈ Θ (64)

We know that V ′(θ) = uθ(ϕ(θ), θ) ≥ 0 as we have already shown that u(x, ·) is monotone

over Θ. Thus, the tightest such constraint occurs when θ = 0. Hence, the maximal Z must

satisfy:

V (0) = −Z ≥ 0 (65)

This implies that Z is optimally 0 and ensures that the (IR) constraint holds for all types.

Hence, the principal’s program is:

max
ϕ

∫
Θ

J(ϕ(θ), θ) dF (θ)

s.t. ϕ(θ′) ≥ ϕ(θ), ϕ(θ) ∈ D ∀θ, θ′ ∈ Θ : θ′ ≥ θ

(66)

This completes the proof.

Part 3: The Optimal Contract

We first solve the pointwise problem in the control problem from Lemma 9 and then verify

that this solution is monotone. The pointwise problem is maxx∈D J(ϕ(θ), θ), where the

maximum exists as J is continuous and D is compact. As J is strictly quasi-concave, this
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maximum is either ϕ(θ) or ϕ(θ). Define ∆J(θ) = J(ϕ(θ), θ)−J(ϕ(θ), θ) for all θ ∈ Θ. When

∆J(θ) > 0, it is ϕ(θ). When ∆J(θ) < 0, it is ϕ(θ). When ∆J(θ) = 0, either is optimal.

Thus, if it is monotone, the claimed solution is optimal (as it is supported on D). Moreover,

this pointwise solution is monotone by Theorem 4′ in Milgrom and Shannon (1994). The

claim that ξ∗ = ϕ∗ and the formula for the optimal tariff follow immediately from applying

Lemma 8.

A.3 Proof of Proposition 3

We first prove the result for an arbitrary uncertain cost of distinguishing actions defined by

any compactly supported probability measure µ ∈ ∆(G), a CARA coefficient λ ∈ (−∞,∞).

Observe that the result for the standard cost of distinguishing for any g ∈ G immediately

follows by taking µ such that suppµ = {g}.
For all g ∈ G, define g = min(x,y)∈X2 g(x, y) > 0 and g = max(x,y)∈X2 g(x, y) > 0. Both

the minimum and maximum are attained and strictly positive because each g is a strictly

positive and continuous function defined over the compact set X2. Fix C ′, C ∈ C such that

C ′ ⊆ C. By the mean-value theorem applied to 1
λ
log(k), there exists

k̂(C ′, C) ∈
[∫

G
exp (λΓg(C)) dµ (g),

∫
G
exp (λΓg(C ′)) dµ (g)

]
(67)

such that

Γµ,λ(C ′)− Γµ,λ(C) =
1

λk̂(C ′, C)

(∫
G
[exp (λΓg(C ′))− exp (λΓg(C))] dµ (g)

)
(68)

Next, by applying the mean-value theorem to exp(λr), for every g ∈ suppµ, there exists

r̂(C ′, C, g) ∈ [Γg(C),Γg(C ′)] such that

exp (λΓg(C ′))− exp (λΓg(C)) = λ exp(λr̂(C ′, C, g)) (Γg(C ′)− Γg(C)) (69)

Another application of the mean-value theorem yields that, for every g ∈ suppµ,

Γg(C ′)− Γg(C) =

∫ x

0

[G(δ′(y), y)−G(δ(y), y)] dy +

∫ x

0

[
G(δ(y), y)−G(δ

′
(y), y)

]
dy (70)

=

∫ x

0

g(ω̂(y), y) [δ′(y)− δ(y)] dy +

∫ x

0

g(ω̃(y), y)
[
δ(y)− δ

′
(y)
]
dy (71)

≥ gL(C \ C ′) (72)

where ω̂(y) ∈ [δ(y), δ′(y)] and ω̃(y) ∈ [δ
′
(y), δ(y)] for every y ∈ X. By combining these last
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three steps together we have

Γµ,λ(C ′)− Γµ,λ(C) ≥
∫
G
g
exp(λr̂(C ′, C, g))

k̂(C ′, C)
dµ(g)L(C \ C ′) (73)

≥
∫
G gdµ(g)∫

G exp (λg) dµ (g)
L(C \ C ′) (74)

where the second equality follows because exp(λr̂(C ′, C, g)) ≥ 1 and k̂(C ′, C) ≤
∫
G exp (λg) dµ (g).

We can therefore set:

ε =

∫
G gdµ(g)∫

G exp (λg) dµ (g)
> 0 (75)

where the inequality follows by the facts that 0 < g ≤ g < ∞ for all g ∈ G and that the

support of µ is compact. With this, we have shown that Γµ,λ is strongly monotone for all

compactly supported µ ∈ ∆(G) and λ ∈ (−∞,∞).

It remains to establish strong monotonicity for λ ∈ {−∞,∞}. Consider the case where

λ = ∞. We have that:

Γµ,∞(C ′)− Γµ,∞(C) = max
g∈suppµ

Γg(C ′)− max
g∈suppµ

Γg(C)

≥ ΓgC (C ′)− ΓgC (C)
(76)

for any gC ∈ argmaxg∈suppµ Γ
g(C). We have already shown that Γg is strongly monotone

for all g ∈ G by Equation 70. Thus, Γµ,∞ is strongly monotone with ε = ming∈suppµ g > 0,

where the strict inequality follows by continuity of the map g 7→ g (which follows by an

application of Berge’s theorem) and compactness of suppµ. The case with λ = −∞ follows

by a symmetric argument (i.e., take gC′ instead).

A.4 Proof of Lemma 1

By Proposition 1 and Lemma 11 we can uniquely represent C ∈ C by (D,D) ∈ D ×D (and

vice-versa), where D is the collection of closed subsets of X that contain 0. We write the reg-

ular contractibility correspondence generated by the sets of self-enforcing recommendations

be C(D,D). We endow D ×D with the product topology induced by the Hausdorff topology

on each collection of sets. With this, using the characterization of the value of contractibility

from Proposition 2, we observe that Problem 8 is equivalent to the problem:

sup
(D,D)∈D×D

J (D)− Γ
(
C(D,D)

)
(77)
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To show existence, it now suffices to argue that (i) the domain D × D is compact in the

Hausdorff topology, and (ii) Γ(C(·,·)) is lower semi-continuous in the Hausdorff topology,

(iii) J is continuous in the Hausdorff topology. The result then follows from Weierstrass’

Theorem.

In Lemma 13, we show that D×D is compact in the Hausdorff topology. In Proposition

8, we leverage L1 semi-continuity of Γ in (δ, δ) to show that Γ(C(·,·)) is lower semi-continuous

in (D,D) in the Hausdorff topology. We now show continuity of J . By Lemma 9 and since

J(x, θ) is strictly supermodular, we have

J (D) =

∫
Θ

J̃ (D, θ) dF (θ) (78)

where we define

J̃ (D, θ) = max
x∈D

J(x, θ) (79)

for all θ ∈ Θ and D ∈ DB. By Berge’s maximum theorem, it follows that the map (D, θ) 7→
J̃ (D, θ) is continuous. This, the fact that J̃ is bounded, and the dominated converge

theorem together imply that D 7→ J (D) is continuous in the Hausdorff topology.

A.5 Proof of Lemma 2

Let ϕ∗ denote the optimal allocation under D and ϕ∗′ denote the optimal allocation under

D
′
= D \ (a, b), as defined in Proposition 2. By Lemma 9, the difference in values under

these contractibility correspondences is

J (D)− J (D
′
) =

∫ 1

0

(J(ϕ∗(θ), θ)− J(ϕ∗′(θ), θ)) dF (θ) (80)

First, we observe that ϕ∗(θ) ̸= ϕ∗′(θ) only if ϕ∗(θ) ∈ (a, b). We denote the set of types who

receive such allocations by Θ(a, b) = {θ ∈ Θ : ϕ∗(θ) ∈ (a, b)}. As ϕ∗ is monotone, this is

an interval. If this interval is empty, then J (D) − J (D
′
) = 0 and the proof is finished.

If not, we construct the optimal ϕ∗′ . Define θ̂(y, z) as the type for which the principal is

indifferent between giving y or z > y, or the unique solution to J(y, θ̂(y, z)) = J(z, θ̂(y, z)).

By proposition 2, the following assignment function is optimal:

ϕ∗′
(θ) =


a if θ ∈ [inf Θ(a, b), θ̂(a, b)],

b if θ ∈ (θ̂(a, b), supΘ(a, b)],

ϕ∗(θ) otherwise.

(81)
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where we observe that supΘ(a, b) = (ϕ∗)−1 (b). Defining the left generalized inverse as

ϕ†(z) = sup{θ ∈ Θ : ϕ(θ) ≤ z}, we also observe that inf Θ(a, b) = (ϕ∗)† (a). Because of this,

we have that:

inf Θ(a, b) =

minx∈D:x>a θ̂(a, x), if it exists,(
ϕP
)−1

(a), otherwise.
(82)

supΘ(a, b) =

maxx∈D:x<b θ̂(b, x), if it exists,(
ϕP
)−1

(b), otherwise.
(83)

We can now bound the loss in value from the deletion of (a, b) from D. By the previous

arguments, we have that:

J (D)− J (D
′
) =

∫ θ̂(a,b)

inf Θ(a,b)

(J(ϕ∗(θ), θ)− J(a, θ)) dF (θ)

+

∫ supΘ(a,b)

θ̂(a,b)

(J(ϕ∗(θ), θ)− J(b, θ)) dF (θ)

(84)

We now proceed in three steps. We first bound the integrands, then bound the limits of

integration, and finally put the two together.

Step 1: Bounding the Integrands. We first derive an upper bound for J(ϕ∗(θ), θ) −
J(x, θ). We expand J(x, θ) to the second order around ϕ∗(θ). Using Taylor’s remainder

theorem, and evaluating at x = ϕ∗′(θ),

J(ϕ∗′(θ), θ) = J(ϕ∗(θ), θ)+Jx(ϕ
∗(θ), θ)(ϕ∗′(θ)−ϕ∗(θ))+

1

2
Jxx(y(θ), θ)(ϕ

∗′(θ)−ϕ∗(θ))2 (85)

for some y(θ) ∈ [ϕ∗(θ), ϕ∗′(θ)]∪ [ϕ∗′(θ), ϕ∗(θ)]. We further apply Taylor’s remainder theorem

to take a first-order expansion of Jx(x, θ) around x = ϕP (θ) and evaluate at x = ϕ∗(θ):

Jx(ϕ
∗(θ), θ) = Jx(ϕ

P (θ), θ) + Jxx(z(θ), θ)(ϕ
∗(θ)− ϕP (θ))

= Jxx(z(θ), θ)(ϕ
∗(θ)− ϕP (θ))

(86)

where the first equality defines the point z(θ) ∈ [ϕ∗(θ), ϕP (θ)]∪ [ϕP (θ), ϕ∗(θ)] and the second

uses the fact that Jx(ϕ
P (θ), θ) = 0 by definition, since ϕP maximizes J and J is strictly
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quasiconcave in its first argument. Combining these expansions, we have that:

|J(ϕ∗′
(θ), θ)− J(ϕ∗(θ), θ)| ≤ |Jx(ϕ∗(θ), θ)||ϕ∗′(θ)− ϕ∗(θ)|+ 1

2
|Jxx(y(θ), θ)|(ϕ∗′(θ)− ϕ∗(θ))2

≤ |Jxx(z(θ), θ)|(ϕ∗′(θ)− ϕ∗(θ))2 +
1

2
|Jxx(y(θ), θ)|(ϕ∗′

(θ)− ϕ∗(θ))2

≤ 3

2
J̄xx(ϕ

∗′(θ)− ϕ∗(θ))2

(87)

where the second line follows from combining Equation 86 with the observation that |ϕ∗(θ)−
ϕP (θ)| ≤ |ϕ∗(θ) − ϕ∗′

(θ)|. Thus, defining c = ϕ∗(θ̂(a, b)), the integrand in the first line of

Equation 84 is bounded above by 3
2
J̄xx(c−a)2 and the integrand in the second line of Equation

84 is bounded above by 3
2
J̄xx(b− c)2.

Step 2: Bounding the Limits of Integration. We first derive bounds for the limits

of integration. There are two approaches to this that we use. The first approach yields

Equation 36 and Equation 37. The second approach yields Equation 38.

In the first approach, we observe that θ̂(a, b)−inf Θ(a, b), supΘ(a, b)−θ̂(a, b) ≤ supΘ(a, b)−
inf Θ(a, b) ≤

(
ϕP
)−1

(b)−
(
ϕP
)−1

(a). Both ϕP and (ϕP )−1 are monotone and differentiable

functions under our maintained assumption that J is twice continuously differentiable and

strictly supermodular in (x, θ). In this case, the slope of the inverse function is ((ϕP )−1)′(x) =
1

(ϕP )′((ϕP )−1(x))
. Moreover, by the implicit function theorem, (ϕP )′(θ) = Jxθ(ϕ

P (θ),θ)
−Jxx(ϕP (θ),θ)

, where

by the fact that ϕP (θ) ∈ (0, x) we must have −Jxx(ϕ
P (θ), θ) > 0.24 Therefore, we can write

the bound

((ϕP )−1)′(x) =
−Jxx(x, (ϕ

P )−1(x))

Jxθ(x, (ϕP )−1(x))
≤ supy∈X,θ∈Θ |Jxx(y, θ)|

infy∈X,θ∈Θ Jxθ(y, θ)
=

J̄xx

¯
Jxθ

< ∞ (88)

where penultimate inequality uses the definitions of J̄xx and
¯
Jxθ; and the last inequality

follows from the fact that J twice continuously differentiable and strictly supermodular over

the compact set X ×Θ. Thus, we have that:

supΘ(a, b)− inf Θ(a, b) ≤ J̄xx

¯
Jxθ

(b− a) (89)

In the second approach, we suppose that a < c < b are three sequential points in D, i.e,

c is isolated, and a and b are the closest elements to c in D. In this case inf Θ(a, b) = θ̂(a, c)

and supΘ(a, b) = θ̂(c, b). We first bound θ̂(a, b)− θ̂(a, c).

To do this, we define θ̂(u) = θ̂(a, c + u) and note that θ̂(b − c) = θ̂(a, b) and θ̂(0) =

24This is vacuously true when J is linear in x so that Jxx = 0 because, in this case, we have ϕP (θ) ∈ {0, x}
for all θ.

54



θ̂(a, c). Under this reformulation, the definition of θ̂(u) can be re-written as J(c+u, θ̂(u)) =

J(a, θ̂(u)). We now implicitly differentiate this to obtain

θ̂′(u) =
−Jx(c+ u, θ̂(u))

Jθ(c+ u, θ̂(u))− Jθ(a, θ̂(u))
(90)

We now apply Taylor’s remainder theorem to θ̂(u) around u = 0, evaluated at u = b− c, to

obtain

θ̂(b− c) = θ̂(0) + θ̂′(ũ)(b− c) (91)

for some ũ ∈ [0, b− c]. Using our definitions, this implies

θ̂(a, b)− θ̂(a, c) = θ̂(b− c)− θ̂(0) =
−Jx(c+ ũ, θ̂(ũ))

Jθ(c+ ũt, θ̂(ũ))− Jθ(a, θ̂(ũ))
(b− c) (92)

We now bound the numerator and denominator of the first fraction. For the numerator, we

apply Taylor’s remainder theorem to Jx(·, θ̂(ũ)) around x = ϕP (θ̂(ũ)) to write

Jx(c+ ũ, θ̂(ũ)) =Jx(ϕ
P (θ̂(ũ)), θ̂(ũ)) + Jxx(z, θ̂(ũ))(c+ ũ− ϕP (θ̂(ũ)))

=Jxx(z, θ̂(ũ))(c+ ũ− ϕP (θ̂(ũ)))
(93)

for some z ∈ [c + ũ, ϕP (θ̂(ũ))], where we use Jx(ϕ
P (θ), θ) = 0 in the second line. Moreover,

we have that (c+ ũ−ϕP (θ̂(ũ))) ≤ b−a. Therefore, we have that |Jx(c+ ũ, θ̂ũ)| < J̄xx(b−a).

For the denominator, we apply Taylor’s remainder theorem to Jθ(·, θ̂(ũ)) around x = a to

write

Jθ(c+ ũ, θ̂(ũ))− Jθ(a, θ̂(ũ)) = Jxθ(z, θ̂(ũ))(c+ ũ− a) (94)

for some z ∈ [a, c + ũ]. We observe that c + ũ − a ≥ c − a. Therefore, |Jθ(c + ũ, θ̂(ũ)) −
Jθ(a, θ̂(ũ))| ≥

¯
Jxθ(c− a). Combining these two bounds, we deduce that:

θ̂(a, b)− θ̂(a, c) ≤ J̄xx(b− a)

¯
Jxθ(c− a)

(b− c) (95)

To bound, θ̂(c, b)− θ̂(a, b) we can apply analogous arguments. By doing this, we obtain:

θ̂(a, b)− θ̂(c, b) ≤ J̄xx(b− a)

¯
Jxθ(b− c)

(c− a) (96)
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Step 3: Bounding the Value. Combining steps 1 and 2. We can now derive the payoff

bound of Equation 37:

J (D)− J (D
′
) =

∫ θ̂(a,b)

inf Θ(a,b)

(J(ϕ∗(θ), θ)− J(a, θ)) dF (θ)

+

∫ supΘ(a,b)

θ̂(a,b)

(J(ϕ∗(θ), θ)− J(b, θ)) dF (θ)

≤
∫ θ̂(a,b)

inf Θ(a,b)

3

2
J̄xx(c− a)2 dF (θ) +

∫ supΘ(a,b)

θ̂(a,b)

3

2
J̄xx(b− c)2 dF (θ)

≤ 3

2
J̄xx[(c− a)2 + (b− c)2]

∫ supΘ(a,b)

inf Θ(a,b)

dF (θ)

≤ 3

2
J̄xx[(c− a)2 + (b− c)2]

J̄xx

¯
Jxθ

(b− a)f̄

=
3

2

J̄2
xxf̄

¯
Jxθ

(b− a)[(c− a)2 + (b− c)2]

(97)

Observing that (c− a)2 + (b− c)2 ≤ (b− a)2, we also obtain Equation 36.

Finally, we obtain Equation 38 by combining step 1 with the second approach to step 2.

Doing this, we obtain:

J (D)− J (D
′
) =

∫ θ̂(a,b)

θ̂(a,c)

(J(ϕ∗(θ), θ)− J(a, θ)) dF (θ)

+

∫ supΘ(c,b)

θ̂(a,b)

(J(ϕ∗(θ), θ)− J(b, θ)) dF (θ)

≤
∫ θ̂(a,b)

θ̂(a,c)

3

2
J̄xx(c− a)2 dF (θ) +

∫ θ̂(c,b)

θ̂(a,b)

3

2
J̄xx(b− c)2 dF (θ)

≤ 3
J̄2
xxf̄

¯
Jxθ

(b− a)(c− a)(b− c)

(98)

Completing the proof.

A.6 Proof of Lemma 3

There are only two δ functions satisfying the properties of Proposition 1 and such that

δ(X) ⊆ {0, x}: (i) δ(x) = 0 and (ii) δ(x) = xI[x = x]. Suppose that δ is given by neither (i)

or (ii). That is, there exists an x0 ∈ (0, x] such that δ′(x0) ∈ (0, x). Consider replacing this

δ′ with δ = 0. As D is the same under δ′ and δ, this replacement is strictly better if and only

if Γ(δ′, δ) > Γ(0, δ) for all δ satisfying the properties of Proposition 1. Strong monotonicity
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of Γ implies that:

Γ(δ′, δ)− Γ(0, δ) ≥ ε

∫
X

δ′(x) dx > 0 (99)

where the area below δ′ is greater than zero by monotonicity of δ′ and the fact that δ′(x0) ∈
(0, x] with x0 ∈ (0, x).

A.7 Proof of Lemma 4

Fix D ∈ D and the corresponding δ and fix a sequence {am, xm, bm}∞m=1 ⊆ D such that

xm ∈ (am, bm) and D ∩ (am, bm) → {x}. By strong monotonicity, we have that:

Γ(D)− Γ(D \ (am, bm)) ≥ ε

∫ bm

am

(
δ(z)− bm

)
dz = ε

∫ bm

am

δ(z) dz − εbm(bm − am) (100)

The cost therefore satisfies Equation 40 if:∫ bm

am

δ(z) dz ≤ bm(bm − am)− (xm − am)(bm − xm)

= bm(bm − xm) + xm(xm − am)

=

∫ bm

am

δm(z) dz

(101)

where δm : [am, bm] → [0, 1] is given by:

δm(z) =

xm, z ∈ [am, xm],

bm, z ∈ (xm, bm].
(102)

As am, xm, bm ∈ D, observe that δD(z) ≤ δm(z) for all z ∈ [am, bm], completing the proof.

A.8 Proof of Lemma 5

Fix a D ∈ D that is infinite, fix an accumulation point x ∈ D (which must exist by com-

pactness of D), and fix a number t > 0. Define the closed ball of points within a radius t

of x as Bt(x). Consider the closed set Bt(x) ∩ D. There are four mutually exclusive and

exhaustive possibilities for this set:

1. Bt(x) ∩D is a perfect set

(a) Moreover, Bt(x) ∩ D is somewhere dense in Bt(x). In this case, there exists an

open interval (a, b) ⊆ Bt(x) ∩ D. Claim I below shows that D \ (a, b) is strictly
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preferred to D, implying the suboptimality of D.

(b) Moreover, Bt(x) ∩ D is nowhere dense in Bt(x). In case 2(a), Bt(x) ∩ D is a

compact, nowhere dense, perfect set. The arguments made in case 2(a) below

establish the existence of an accumulation point w ∈ Bt(x) ∩ D that is isolated

from the left: there exists η > 0 such that (w− η, w) has empty intersection with

Bt(x)∩D.25 Given such a point, Claim II below constructs a variation D \ (a, b),
where w ∈ (a, b) that is strictly preferred to D.

2. Bt(x) ∩D is not a perfect set

(a) Moreover, Bt(x) ∩D is uncountably infinite. We define A = Bt(x) ∩D. In this

case, A is not a perfect set, is uncountably infinite, and contains no intervals. As

A is closed, by the Cantor-Bendixson theorem (see, e.g., p. 67 of Apostol, 1974)

it can be decomposed as A = AP ∪ AC , where AP ∩ AC = ∅, AP is a perfect set,

and AC is at most countably infinite. As A contains no intervals, it is nowhere

dense in Bt(x). Thus, AP is nowhere dense in Bt(x). Therefore, there exists an

open set U ⊂ Bt(x) such that U ∩ AP = ∅. Fix an arbitrary point z ∈ U and

define w = min{x′ ∈ AP : x′ ≥ z}. These points are well defined since AP is a

perfect, hence closed, set. Moreover, we have that w > z. Now consider the set

Z = [z, w) ∩ A. Observe that Z = [z, w) ∩ AC . Toward a contradiction, assume

that there exists w′ ∈ [z, w) ∩AP . Since z ≤ w′ < w and w′ ∈ AP , it follows that

min{x′ ∈ AP : x′ ≥ z} ≤ w′ < w, yielding a contradiction to the definition of w.

There are three possibilites for Z: it is empty, it is a finite set, or it is a countably

infinite set. If Z is an empty set, then (z, w) ∩ A = ∅. If Z is a finite set, define

z′ = argminx′∈Z w − x′. In this case, we have that (z′, w) ∩ A = ∅. In both of

these cases, we have shown that there exists w ∈ A that is isolated from the left

and is an accumulation point in A. Claim II below uses this fact to construct a

variation D \ (a, b) that is strictly preferred to D. If Z is a countably infinite set,

then fix an accumulation point y ∈ Z and consider the set Bt′(y) ∩ D for some

t′ > 0 such that Bt′(y) ⊂ Z. In this case, Bt′(y) ∩ D is a countably infinite set

and we have shown that y ∈ D is an accumulation point of D. Claim III below

uses this fact to construct a variation D \ (a, b) that is strictly preferred to D.

(b) Moreover, Bt(x)∩D is countably infinite. Claim III constructs a variationD\(a, b)
that is strictly preferred to D.

We now prove the three claims in turn, thus completing the proof.

25This follows from the construction of case 2(a). In particular, by observing that AC = ∅ (the set is
already perfect in this case), the same arguments as in case 2(a) yield Z = ∅, implying the existence of an
isolated point from the left in Bt(x) ∩D.
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Claim I: “Intervals”. Suppose that D contains an interval I. Let x be the midpoint of

such an interval and consider a sequence of points am = x − t
m
, xm = x, and bm = x + t

m
,

where t > 0 is small enough such that (x − t, x + t) is contained in I. We use Equation 36

from Lemma 2. In particular, for every m, we have that:

J (D)− J
(
D \

(
x− t

m
, x+

t

m

))
≤ 12

J̄2
xxf̄

¯
Jxθ

t3m−3 (103)

We observe that D ∩ (x− t
m
, x+ t

m
) = (x− t

m
, x+ t

m
) for all m by construction. Moreover,

the topological limit of (x− t
m
, x+ t

m
) is {x}. Thus, by Lemma 4, there exists M such that

for all m ≥ M , we have that:

Γ(D)− Γ

(
D \

(
x− t

m
, x+

t

m

))
≥ εt2m−2 (104)

Thus, for all m > max
{
M, 12 J̄2

xxf̄

¯
Jxθ

t
ε

}
we have that:

J (D)− Γ(D) < J
(
D \

(
x− t

m
, x+

t

m

))
− Γ

(
D \

(
x− t

m
, x+

t

m

))
(105)

which contradicts the optimality of D.

Claim II: “Perfect and Nowhere Dense Sets”. Suppose that an accumulation point

x∗ ∈ D is isolated from the left. That is, there exists η > 0 such that (x∗ − η, x∗) ∩D = ∅.
Define also the point y = max{z ∈ [0, x∗ − η] ∩D}, which is well-defined by compactness of

D. Next, consider the constant sequence am = y and the sequence {bm} equal to a monotone

decreasing sequence of points in D that converges to x∗. Because of the Bolzano-Weierstrass

theorem, such a sequence always exists as x∗ is a limit point. Thus, we have from statement

2 of Lemma 2 (Equation 37) that there exists a sequence of points zm ∈ (x∗, bm) ∩ D such

that:

J (D)− J (D \ (y, bm)) = J (D)− J (D \ [x∗, bm))

≤ 3

2

J̄2
xxf̄

¯
Jxθ

(bm − x∗)
[
(bm − zm)

2 + (zm − x∗)2
]
≤ 3

2

J̄2
xxf̄

¯
Jxθ

(bm − y)
[
(bm − x∗)2

] (106)

We now fix the sequence xm = x∗ and observe that the topological limit of (y, bm) ∩ D is

{x∗}. Thus, by Lemma 4, we have that there exists M such that for all m ≥ M , we have

that:

Γ(D)− Γ(D \ (y, bm)) ≥ ε(x∗ − y)(bm − x∗) (107)
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As bm − x∗ is common to both terms we have that for all m ≥ M that:

Γ(D)− Γ(D \ (y, bm))− (J (D)− J (D \ (y, bm)))

≥ (bm − x∗)

[
ε(x∗ − y)− 3

2

J̄2
xxf̄

¯
Jxθ

(bm − x)(bm − y)

] (108)

As bm → x∗, we have that there exists a M̂ such that
[
ε(x∗ − y)− 3

2
J̄2
xxf̄

¯
Jxθ

(bm − x)(bm − y)
]
>

0 for all m ≥ M̂ , which implies that for all m ≥ max{M, M̂}:

J (D)− Γ(D) < J (D \ (y, bm))− Γ(D \ (y, bm)) (109)

This contradicts the optimality of D.

Claim III: “Countably Infinite Sets”. Suppose that x is an accumulation point of D

and Bt(x) ∩ D is a countably infinite set for some t > 0. As D is countably infinite, we

know that every neighborhood of x contains an isolated point. Let {xm} ⊂ Bt(x) ∩D be a

monotone sequence of isolated points such that xm → x. As xm is isolated, we may define

am = max{y ∈ D : y < xm} and bm = min{y ∈ D : y > xm}. By statement 3. in Lemma 2

(Equation 38), we have that:

J (D)− J (D \ {xm}) ≤ 3
J̄2
xxf̄

¯
Jxθ

(bm − am)(xm − am)(bm − xm) (110)

By construction, we have that xm ∈ (am, bm). Moreover, D∩(am, bm) = {xm}, the topological
limit of which is {x} as xm → x. Thus, by Lemma 4, we have that there exists M such that

for all m ≥ M , we have that:

Γ(D)− Γ(D \ {xm}) ≥ ε(xm − am)(bm − xm) (111)

Factoring (xm − am)(bm − xm) from both expressions, we have that:

Γ(D)− Γ(D \ {xm})− (J (D)− J (D \ {xm}))

≥ (xm − am)(bm − xm)

[
ε− 3

J̄2
xxf̄

¯
Jxθ

(bm − am)

] (112)

As am, bm → x, we have that there exists M̂ such that ε−3 J̄2
xxf̄

¯
Jxθ

(bm−am) > 0 for all m ≥ M̂ .

This implies that for all m ≥ max{M, M̂} that:

J (D)− Γ(D) < J (D \ {xm})− Γ(D \ {xm}) (113)
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which contradicts the optimality of D.

A.9 Proof of Lemma 6

An optimal D
∗
exists by Lemma 1 and must be finite by Lemma 5. Furthermore, given

that any optimal D
∗
is finite, we can express any such set as a finite set of ordered points

{x1, . . . , xK∗} for some K∗ ∈ N. Take any three sequential points xm−1, xm, xm+1 ∈ D
∗
.

We can apply statement 3 of Lemma 2 (Equation 38) to bound the loss from eliminating

contractibility at xm:

J (D
∗
)− J (D

∗ \ {xm}) ≤ 3
J̄2
xxf̄

¯
Jxθ

(xm − xm−1)(xm+1 − xm)(xm+1 − xm−1) (114)

Moreover, we can take constant sequences an = xm−1, x̃n = xm bn = xm+1 for all n ∈ N.
an, x̃n, bn ∈ D

∗
for all n ∈ N and D

∗ ∩ (an, bn) = {xm} for all n ∈ N. Thus, by strong

monotonicity of Γ, Lemma 4 implies that:

Γ(D
∗
)− Γ(D

∗ \ {xm}) ≥ ε(xm − xm−1)(xm+1 − xm) (115)

Optimality of D
∗
requires that J (D

∗
)−J (D

∗ \ {xm}) ≥ Γ(D
∗
)−Γ(D

∗ \ {xm}). Combining

this with Inequalities 114 and 115, we have that:

3
J̄2
xxf̄

¯
Jxθ

(xm − xm−1)(xm+1 − xm)(xm+1 − xm−1) ≥ ε(xm − xm−1)(xm+1 − xm) (116)

Dividing both sides by (xm+1 − xm)(xm − xm−1) yields

xm+1 − xm−1 ≥
ε

3
¯
Jxθ
J̄2
xxf̄

(117)

Thus, we have that:

x̄ ≥ xK∗ − x1 =

⌊K∗/2⌋∑
j=1

x2j+1 − x2j−1 ≥ K∗ ε

6
¯
Jxθ
J̄2
xxf̄

(118)

Re-arranging this equation yields the desired bound.

A.10 Proof of Proposition 4

We first derive the optimal allocation. As J is strictly single-crossing, J(xk, θ)−J(xk−1, θ) =

0 has no solution if and only if (i) J(xk, 0)−J(xk−1, 0) > 0 and (ii) J(xk, 1)−J(xk−1, 1) < 0.
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As J is strictly quasi-concave, if J(xk, 0)− J(xk−1, 0) > 0, then J(·, 0) is strictly increasing

at xk−1, and therefore at all xj for j ≤ k − 1. Thus, if J(xk, 0) − J(xk−1, 0) > 0 holds for

k, it holds for all j ≤ k. Define k = max{k ∈ {1, . . . , K} : J(xk, 0) − J(xk−1, 0) > 0},
with the convention that k = 1 if this set is empty. Similarly, if J(xk, 1) − J(xk−1, 1) < 0,

then J(·, 1) is strictly decreasing at xk. Thus, if J(xk, 1) − J(xk−1, 1) < 0 holds for k, it

holds for all j ≥ k. Define k = min{k ∈ {1, . . . , K} : J(xk, 1) − J(xk−1, 1) < 0}, with the

convention that k = K if this set is empty. As J is strictly single crossing, k > k. We now

have that J(xk, θ) − J(xk−1, θ) = 0 has a solution if and only if k ∈ {k + 1, . . . , k − 1} (if

k = k + 1, then this set is empty). For all k ≥ k, we have that θ̂k = 1. For all k ≤ k, we

have that θ̂k = 0. For all k ∈ {k + 1, . . . , k − 1}, we have that θ̂k is the unique solution to

J(xk, θ̂k) = J(xk−1, θ̂k). As J is strictly quasi-concave, we know that ϕP (θ̂k) ∈ (xk−1, xk),

which implies that ϕ(θ̂k) = xk−1 and ϕ(θ̂k) = xk. Thus, by Proposition 2, we have that

ϕ∗(θ) = xk for all θ ∈ (θ̂k, θ̂k+1].

We now derive the tariff that supports this allocation. Applying Equation 12 from Lemma

8, we have that:

T (xk) = u(xk, θ̂k)− I[k ≥ 2]
k−1∑
j=1

∫ θ̂j+1

θ̂j

uθ(xj, s) ds

= u(xk, θ̂k)− I[k ≥ 2]
k−1∑
j=1

[
u(xj, θ̂j+1)− u(xj, θ̂j)

]
= u(x1, 0) + I[k ≥ 2]

k∑
j=2

[
u(xj, θ̂j)− u(xj−1, θ̂j)

]
(119)

where the second equality computes the integrals and the final equality telescopes the sum-

mation. Observing that x1 = 0 and u(0, 0) = 0 completes the proof.

A.11 Proof of Proposition 5

Observe for any uncertain cost of distinguishing indexed by a compactly supported µ ∈ ∆(G)
and λ ∈ (−∞,∞) that we can write:

Γµ,λ
0 (δx) =

1

λ
log

(∫
G
exp

(
λ

K∑
k=1

∫ xk

xk−1

[G(x, y)−G(xk, y)] dy

)
dµ(g)

)
(120)

For every k ∈ {2, ..., K}, define I(xk−1, xk) =
∫ xk

xk−1
[G(x, y)−G(xk, y)] dy. By Leibniz’s rule,

for every k ∈ {2, ..., K − 1}, this is continuously differentiable in (xk−1, xk) when xk−1 < xk,

and I(xK−1, xK) is continuously differentiable in xK−1 when xK−1 < x. This implies that
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Γg
0(δx) is continuously differentiable in 0 = x1 < . . . < xK = x for all g ∈ G. Finally, because

λ ∈ (−∞,∞) and µ has compact support, the chain rule and the dominated convergence

theorem imply that Γµ,λ
0 (δx) is continuously differentiable in 0 = x1 < . . . < xK = x.

A.12 Proof of Proposition 6

We first introduce some preliminary notation. Given a vector x = (x1, x2, ..., xK−1, xK) ∈ RK

such that x1 = 0, xK = x, and K ≥ 2, for all ε > 0, we let (xk + ε, x−k) ∈ RK denote the

vector where we replace xk with xk + ε for some k ∈ {2, ..., K − 1}.
Because Γ is strongly monotone, Theorem 1 implies that any optimal set of self-enforcing

recommendations is finite with cardinality less than B. Fix one such optimal set D
∗
=

{x∗
1, ..., x

∗
K∗} where K∗ ≤ B is its cardinality and where 0 = x∗

1 < . . . < x∗
K∗ = x. Let

x∗ ∈ XK∗
denote the totally order vector stacking the elements of D

∗
. Because the latter

is optimal, x∗ must solve Problem 22. In particular, because Γ is finitely differentiable, x∗

must satisfy the first-order condition

d

dε
J (δ(x∗

k+ε,x∗
−k)

)|ε=0 =
d

dε
Γ(δ(x∗

k+ε,x∗
−k)

)|ε=0 ∀k ∈ {2, . . . , K∗ − 1} (121)

By Proposition 4, for ε small enough as xk ∈ (xk−1, xk+1), we have that J (δ(x∗
k+ε,x∗

−k)
) =∫

Θ
J(ϕ∗

ε(θ), θ)dF (θ) where ϕ∗
ε is defined in Equation 21 with Dε = {x∗

1, . . . , x
∗
k + ε, . . . , x∗

K∗}.
With this, the left-hand-side of (121) is

d

dε
J (δ(x∗

k+ε,x∗
−k)

)|ε=0 =

∫ θ̂k+1

θ̂k

Jx(x
∗
k, θ) dF (θ)+

∂

∂x∗
k

θ̂k

(
J(x∗

k, θ̂k)− J(x∗
k−1, θ̂k)

)
f(θ̂k)+

+
∂

∂x∗
k

θ̂k+1

(
J(x∗

k+1, θ̂k+1)− J(x∗
k, θ̂k+1)

)
f(θ̂k+1)

=

∫ θ̂k+1

θ̂k

Jx(x
∗
k, θ) dF (θ)

(122)

where, in the second equality, we use the fact that J(x∗
k, θ̂k) = J(x∗

k−1, θ̂k) by definition.

By construction, the right-hand-side of (121) is d
dε
Γ(δ(x∗

k+ε,x∗
−k)

)|ε=0 = ∂
∂xk

Γ(δx∗), hence we

obtain Equation 23. Finally, again by definition, we have that x1 = 0 and xK∗ = 1.
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A.13 Proof of Proposition 7

We split the argument into three parts. We first map the problem to one that satisfies the

general assumptions of Section 2. We next calculate the optimal contract in the transformed

problem. We finally map the allocation and tariff back to the original problem.

Step 1: Transformation of the Problem

We define x = 1 − e ∈ X = [0, 1] as the agent’s shirking and θ = 1 − ϑ ∼ F = U [0, 1] as

their unproductivity. We define transformed preferences for the agent,

u(x, θ) = ũ(1− x, 1− θ)− ũ(1, 1− θ) = (aθ + b)x− b
x2

2
(123)

This describes how much agent θ enjoys shirking at level x relative to providing full effort.

The agent’s preference u is strict single-crossing in (x, θ), since uxθ = a > 0; increasing in

both x and θ on the relevant domain; and satisfies u(0, θ) = 0 for all θ ∈ [0, 1]. We define

the transformed payoff for the principal,

π(x) = π̃(1− x)− π̃(1) = −cx (124)

This measures the revenue lost by allowing degree x of shirking, relative to receiving full

effort. The principal’s payoff satisfies π(0) = 0. We finally observe that costs of distinguishing

can be written in terms of shirking when we define the contractibility correspondence C =

1− C̃. In particular, we observe that

Γ(C) = κ

(∫ 1

0

δ(x) dx+

∫ 1

0

(1− δ(x)) dx

)
(125)

where δ(x) = minC(x) and δ(x) = maxC(x).

The (e, ϑ) problem satisfies the assumptions of Lemma 9 in the case of monotone de-

creasing preferences. In this case, the result implies that the principal problem given a set

of self-enforcing efforts D ⊆ E is

J̃ (D) := max
ϕ̃

∫ 1

0

J̃(e, ϑ) dF̃ (ϑ)

s.t. ϕ̃(ϑ′) ≥ ϕ̃(ϑ), ϕ̃(ϑ) ∈ D, ϑ, ϑ′ ∈ [0, 1] : ϑ′ ≥ ϑ

(126)
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where the virtual surplus function in the integral is

J̃(e, ϑ) = ũ(e, ϑ) + π̃(e)− 1− F̃ (ϑ)

f̃(ϑ)
ũϑ(e, ϑ)

= −a(1− ϑ)e− b
e2

2
+ ce− (1− ϑ)ae

= −aθ(1− x)− b
(1− x)2

2
+ c(1− x)− θa(1− x)

= (2aθ + b− c)x− b
x2

2
+

(
c− b

2

)
(127)

Using this substitution, we observe the following mapping to the (x, θ) problem:

J̃ (D)−
(
c− b

2

)
= J (D) = max

ϕ

∫ 1

0

(
(2aθ + b− c)ϕ(θ)− b

ϕ(θ)2

2

)
dF (θ)

s.t. ϕ(θ′) ≥ ϕ(θ), ϕ(θ) ∈ D, θ, θ′ ∈ [0, 1] : θ′ ≥ θ

(128)

where D = {(1− e) ∈ X : e ∈ D}. Next, for every correspondence C : X ⇒ X, define the

effort-based correspondence (1−C) : E ⇒ E by (1−C)(ζ) = {1− x ∈ E : x ∈ C(1− ζ)} for

all ζ ∈ E. We next map the costs to the case with increasing preferences. We first observe

that Γ(C) = Γ̃(1− C).

Combining these steps, we obtain that the original problem is equivalent to solving the

transformed problem with virtual surplus J(x, θ) = (2aθ+b−c)x−bx
2

2
to obtain the optimal

extent of contractibility.

Theorem 1 implies that any optimal contractibility correspondence can be represented

by a coarse set of self-enforcing shirking recommendations, D = {x1, . . . , xK}. In the trans-

formed problem, these map to a set of self-enforcing effort recommendations {1−x1, . . . , 1−
xK}. To apply Proposition 6, we must also establish that (without loss of optimality) x1 = 0

and xK = x = 1. Excludability guarantees that e1 = 0 (zero effort, or full shirking) is per-

fectly contractible. An additional simple argument is required to establish also that (without

loss of optimality) we can restrict attention to the case in which eK = 1 (full effort or zero

shirking) is also contractible.26 Imagine it were not, and optimal contractibility were repre-

sented by C̃. Then, construct a variant that perturbs C̃ such that e = 1 is fully contractible:

C̃ ′(ζ) = C̃(ζ) for e ∈ [0, 1) and C̃ ′(1) = {1}. We observe that Γ̃(C̃ ′) = Γ̃(C̃): this can

be shown by direct calculation, or by appeal to the L1-continuity of the induced costs over

26This presents one small asymmetry in our analysis of cases with increasing and decreasing preferences:
in the problem with increasing preferences, the axioms on contractibility (in particular, the implied upper
semi-continuity of δ) suffice to establish that x ∈ C(x) and therefore x is a self-enforcing recommendation.
Here, we need a separate argument that relies on the (maintained) L1-continuity of costs.
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δ, δ. But under C̃ ′ there are weakly more more self-enforcing recommendations. Thus, C̃ ′

obtains weakly higher value. Hence, it is without loss of optimal to restrict attention to

contractibility containing e = 1 (x = 0) as a self-enforcing recommendation. Together, this

argument shows that we can apply Proposition 6 to the transformed problem.

Step 2: Optimal Contract in the Transformed Problem

We leverage our characterization of the optimal contract in Proposition 6 to set up the

optimization problem in closed form. The virtual surplus function in this setting is given

by Equation 30. Equation 22 gives the principal’s interim payoff under the optimal contract

conditional on any set of K contractible actions {xk}Kk=1.

We first solve for the candidate optimal contract that solves the variational first-order

condition in Proposition 6 for each K. This first-order condition for k ∈ {2, K − 1} is

∫ θ̂k+1

θ̂k

(2aθ + b(1− xk)− c) dθ − κ(−2xk + xk−1 + xk+1) = 0 (129)

where θ̂k =
b
4a
(xk + xk−1) +

c−b
2a

. Calculating the integral and evaluating at θ̂k, we write

κ(−2xk + xk−1 + xk+1) =
[
aθ2 + (b− c− bxk)θ

]θ̂k+1

θ̂k

= (θ̂k+1 − θ̂k)
[
a(θ̂k+1 + θ̂k) + b− c− bxk

]
=

b2

16a
(xk+1 − xk−1)(xk+1 + xk−1 − 2xk)

(130)

This condition can be re-arranged to obtain

(xk+1 + xk−1 − 2xk)

[
b2

16a
(xk+1 − xk−1)− κ

]
= 0 (131)

This equation has two solutions,

xk =
xk+1 + xk−1

2
, xk+1 = xk−1 +∆ (132)

where ∆ = 16aκ
b2

. We now separately consider each case.

Case 1: Uniform Grid. From the boundary conditions, we have that x1 = 0 and xK = 1.

Thus, we have that:

xk =
xk+1 + xk−1

2
=⇒ xk =

k − 1

K − 1
(133)
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We can verify that this is a local maximum by checking the Hessian is negative definite at

this solution. We calculate that:

∂2J
∂x2

k

= HJ
k−1,k−1 = − b2

4a(K − 1)
+ 2κ =: Λ

∂2J
∂xk∂xk+1

= HJ
k,k−1 = HJ

k−1,k =
b2

8a(K − 1)
− κ = −1

2
Λ

(134)

where we note that row and column k − 1 of HJ corresponds to the variable xk and in the

first equality we define Λ. Thus, the Hessian is a tridiagonal Toeplitz matrix, which implies

that the Eigenvalues are, by Theorem 2.2 of Kulkarni, Schmidt, and Tsui (1999), given by:

λk = Λ

(
1 + cos

(
k − 1

K
π

))
(135)

for k ∈ {2, . . . , K − 1}. As cos
(
k−1
K

π
)
> −1 for all such k, we have that sgn(λk) = sgn(Λ).

Thus, the Hessian is negative definite if and only if:

K < K̄ = 1 +
b2

8aκ
(136)

We will later verify that this holds whenever K is set optimally, confirming the optimality

of the uniform grid solution.

Case 2: Alternating Grid. Under the second solution, it must be the case that even

points form a uniform grid with spacing ∆ = 16aκ
b2

and the odd points form a uniform grid

with spacing ∆ = 16aκ
b2

. When K is odd, given the boundary conditions that x1 = 0 and

xK = 1, we have that this is possible only when K = 2 + 2
∆
, which is itself only possible

when b2

8aκ
is an odd integer. When K is even, the solution must be xk = k−1

2
∆ for k odd,

and xk = 1− K−k
2

∆ for k even. This is possible for any even K < 2 + 2
∆
.

We next show that the alternating grid is not a local maximum of the objective function

and therefore can be ignored. For a local maximum, a necessary condition is that the Hessian

is negative semidefinite. We will show the existence of a vector x ∈ RK−2 such that v ̸= 0 an

v′HJ v > 0, which implies that HJ is not negative semidefinite. To do this, we first evaluate

the second-order conditions at the conjectured alternating grid solution. These simplify to

∂2J
∂x2

k

= HJ
k−1,k−1 = − b2

8a
∆+ 2κ = 0

∂2J
∂xk∂xk+1

= HJ
k,k−1 = HJ

k−1,k =
b2

8a
(xk+1 − xk)− κ

(137)
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Using this, we define vk = zk−1 − zk, where zk denotes the unit vector in dimension k.

This direction corresponds to increasing xk and decreasing xk+1. We calculate

v′kH
J vk = 2

(
κ− b2

8a
(xk+1 − xk)

)
(138)

We now split the proof into two cases. First, consider the case in which K > 4. In this case,

there must exist some xk, xk+1 such that xk+1−xk <
∆
2
, since the grid is not uniform. Then,

v′kH
J vk > 2

(
κ− ∆b2

16a

)
> 0 (139)

and, as desired, we have shown that the Hessian is not negative definite. Next, we consider

the case in which K = 4. In this case, we take two candidate vectors. The first is u = z1+z2,

and we observe

u′HJu = 2

(
b2

8a
(x3 − x2)− κ

)
(140)

The second is v1 = z1 − z2, and we observe

v′1H
J v1 = 2

(
κ− b2

8a
(x3 − x2)

)
= −u′HJu (141)

We have therefore shown the desired result but for the case in which u′HJu = v′1H
J v1 = 0.

Here, x3 − x2 =
8τ
β2 = ∆

2
. But this is precisely the case of the uniform grid.

Profits and Costs. We next derive the principal’s profit and optimal tariff evaluated at

the candidate uniform-grid solution:

Lemma 10. The value to the monopolist of a K-item contract supported on a uniform grid

can be written as V (K) = Π̂(K)− Γ̂(K) where

Π̂(K) =
b− c+ 2a

4a
(2a− c) +

b2

48a

(2K − 3) (2K − 1)

(K − 1)2

Γ̂(K) =
κ

2

K − 2

K − 1

(142)

Moreover, the optimal allocation is supported by the tariff

T ∗(xk) =
1

2

k − 1

K∗ − 1

(
b+ c− b

2

k − 1

K∗ − 1

)
(143)
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Proof. Using the representation in Equation 22, we write

Π̂(K) =
K∑
k=1

∫ θ̂k+1

θ̂k

(
(2aθ + b− c)xk − b

x2
k

2

)
dθ

=
K∑
k=1

[
axkθ

2 − xk

(
c− b+

b

2
xk

)
θ

]θ̂k+1

θ̂k

=
K∑
k=1

(
axk(θ̂k+1 − θ̂k)(θ̂k+1 + θ̂k)− xk

(
c− b+

b

2
xk

)
(θ̂k+1 − θ̂k)

)

=
b

2τ(K − 1)

K−1∑
k=2

(
axk(θ̂k+1 + θ̂k)− xk

(
c− b+

b

2
xk

))
+ (1− θ̂K)

(
a(1 + θ̂K) +

b

2
− c

)
(144)

where, in the fourth equality, we use that θ̂k+1 − θ̂k = a
2b(K−1)

for k < K and that θ̂K+1 = 1

and xK = 1. We simplify the summation term as

K−1∑
k=2

(
axk(θ̂k+1 + θ̂k)− xk

(
a+ c− b+

b

2
xk

))

=
K−1∑
k=2

(
axk

(
c− b

a
+

b

a
xk

)
− xk

(
c− b+

b

2
xk

))

=
b

2

K−1∑
k=2

x2
k

=
b

2

K−1∑
k=2

(
k − 1

K − 1

)2

=
b

12(K − 1)
(K − 2)(2K − 3)

(145)

where in the second line we use that θ̂k + θ̂k+1 = 1− b−c
a

+ β
a
xk. To simplify the second term,

we observe that

θ̂K =

(
c− b

2a

)
+

b

4a

(
1 +

K − 2

K − 1

)
1− θ̂K =

2(b− c)(K − 1)− b(2K − 3)

4a(K − 1)

(146)

and therefore

(1− θ̂K)

(
a(θ̂K + 1) +

b

2
− c

)
=

b− c+ 2a

4a
(2a− c) +

b2

16a(K − 1)2
(2K − 3) (147)
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Putting this together, we write

Π̂(K) =
b2

24a(K − 1)2
(K − 2)(2K − 3) +

b− c+ 2a

4a
(2a− c) +

b2

16a(K − 1)2
(2K − 3)

=
b− c+ 2a

4a
(2a− c) +

b2

48a

(2K − 3) (2K − 1)

(K − 1)2

(148)

We next show the desired representation of Γ̂. This follows by direct calculation:

Γ̂(K) = κ
K−1∑
k=1

1

K − 1

k − 1

K − 1

=
κ

(K − 1)2

K−1∑
k=1

(k − 1)

=
κ

2

K − 2

K − 1

(149)

We finally compute the tariff. Using Equation 12, we have that

T ∗(xk) = I[k ≥ 2]
k∑

j=2

[
u(xj, θ̂j)− u(xj−1, θ̂j)

]
= I[k ≥ 2]

k∑
j=2

[
(aθ̂j + b)(xj − xj−1) +

b

2
(x2

j−1 − x2
j)

]

= I[k ≥ 2]
k∑

j=2

[
(aθ̂j + b)

1

K − 1
+

b

2(K − 1)2
((j − 2)2 − (j − 1)2)

]

= I[k ≥ 2]
k∑

j=2

[
(aθ̂j + b)

1

K − 1
− b

2(K − 1)2
(2j − 3)

]

= I[k ≥ 2]
k∑

j=2

[(
a

(
c− b

2a
+

b

4a

2j − 3

K − 1

)
+ b

)
1

K − 1
− b

2(K − 1)2
(2j − 3)

]

= I[k ≥ 2]
k∑

j=2

[
b+ c

2(K − 1)
− b

4(K − 1)2
(2j − 3)

]
=

1

2

k − 1

K∗ − 1

(
b+ c− b

2

k − 1

K∗ − 1

)

(150)

where we substitute in the expressions for θ̂j and xj, simplify at each step, and evaluate at

K = K∗.

70



To derive K̃, we take the first derivative of V :

V ′(K) =
b2

24a(K − 1)3
− κ

2(K − 1)2
(151)

We observe that V ′(K) > 0 if and only if

K < K̃ :=
b2

12aκ
+ 1 (152)

We now prove that |K∗ − K̃| < 1. If K∗ − K̃ > 1, then we know that V (K∗ − 1) > V (K∗)

as V ′ < 0 for all K∗ − 1 < K < K∗; this contradicts optimality. Similarly, if K̃ −K∗ > 1,

we know that V (K∗ + 1) > V (K∗) as as V ′ > 0 for all K∗ < K < K∗ + 1; this contradicts

optimality. Recall that we needed to check if the Hessian was negative definite. This is

true so long as K∗ < K̄. As K̄ = 4
3
K̃, this holds whenever K̃ ≥ 3. It remains to check

when K̃ ∈ (2, 3) and K∗ = 3. Direct calculation shows that indifference between K = 2

and K = 3 occurs when κ = b2

16a
. At this point, K̃ = 7/3. Thus, whenever K∗ > 2 is

strictly optimal (which is when κ < b2

16a
), we have that K∗ < K̄. The comparative statics

follow from standard monotone comparative statics arguments, after the observations that

VKa < 0, VKb > 0, and VKc = 0. Finally, V (3) − V (2) = 1
4

(
b2

16a
− κ
)
. Thus, whenever

κ < b2

16a
we have that V (3) > V (2), which implies that K∗ ≥ 3.

Step 3: Mapping Back to the Original Problem

Since e = 1− x, we observe that the optimal contract can be supported on ek = 1− xK−k =
k−1
K∗−1

withK∗ self-enforcing recommendations. We next observe that, in the original problem,

the IR constraint binds for type ϑ = 0, who always (for any K∗) takes action x = 1 or e = 0

and receives direct payoff ũ(0, 0) = 0. Therefore, T̃ (ek) = T (xK∗−k) − C where C solves

T (1)− C = 0, and hence C = 1
2

(
b
2
+ c
)
. Therefore, we calculate

T̃ (ek) =
1

2

(
1− k − 1

K∗ − 1

)(
b+ c− b

2

(
1− k − 1

K∗ − 1

))
− 1

2

(
1

2
b+ c

)
=

1

2

(
1− k − 1

K∗ − 1

)(
b

2
+ c+

b

2

k − 1

K∗ − 1

)
− 1

2

(
1

2
b+ c

)
=

b

4

k − 1

K∗ − 1
− 1

2

k − 1

K∗ − 1

(
b

2
+ c+

b

2

k − 1

K∗ − 1

)
= −1

2

k − 1

K∗ − 1

(
c+

b

2

k − 1

K∗ − 1

)
(153)
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We finally translate the transfers into wages by reversing the sign of the payments: w(ek) =

−T̃ (ek) for all k. That is, a positive wage corresponds to a negative transfer from the agent

(worker) to the principal (firm). This completes the proof.

A.14 Proof of Corollary 1

By assumption on (a, b, c, κ), there exists a maximal neighborhood B of a such that, for all

a′ ∈ B, there exists a unique optimal K∗ at (a′, b, c, κ). Let A be the set of a′ ∈ B such

that K∗(a′) = K∗(a), where K∗(a′) is the unique optimal K∗ at parameter vector (a′, b, c, κ).

We observe from Lemma 10 that V = Π̂ − Γ̂ is submodular in a. This implies that K∗ is

monotone in a and therefore that A = B. By Proposition 7, we have that {w∗(ek)}K∗
k=1 is

invariant to a conditional on K∗. Moreover, again by Proposition 7, {w∗(ek)}K∗
k=1 is different

from {w∗(ek)}Kk=1 for any K ̸= K∗ and, as B is the maximal neighborhood of a such that K∗

is unique, whenever a′ ̸∈ B, there exists an optimal K∗∗ ̸= K∗.

A.15 Proof of Corollary 2

We now consider the problem of maximizing total surplus subject to the implementability

constraint, or in which

S(x, θ) := u(x, θ) + π(x, θ) = (aθ + b− c)x− b
x2

2
(154)

We observe that this is the same as J(x, θ; â, b̂, ĉ) (see Equation 30) where â = a/2, b̂ = b,

and ĉ = c. All arguments in the proof of Proposition 7 apply to this transformed problem.

The fact that K∗C ≥ K∗ follows from the result in Proposition 7 that K∗ decreases in c.

The claim that K̃C = 2K̃ − 1 follows directly from the expression of K̃ from Proposition 7.
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B Additional Technical Results

B.1 The Self-Enforcing Recommendations Representation of C

Lemma 11. A contractibility correspondence C is regular if and only if there exist two closed

sets D ⊆ X and D ⊆ X such that 0 ∈ D, 0, x ∈ D and for all y ∈ X:

C(y) =

[
max

z≤y:z∈D
z, min

z≥y:z∈D
z

]
(155)

Moreover, given C, D and D are unique and given by D = ∪y∈X minC(y) = δ(X) and

D = ∪y∈X maxC(y) = δ(X).

Proof. First, recall from Proposition 1 that C is regular if and only if there exists two

functions δ and δ with the stated properties such that C(y) = [δ(y), δ(y)]. Here, we prove

this result by establishing the equivalence of this representation and (D,D) representations

of C.

From (δ, δ) to (D,D). We start with an ancillary lemma.

Lemma 12 (Fixed Point Lemma). Consider two functions δ(x) and δ(x) as in Proposition

1. Then for all z ∈ δ(X) and z ∈ δ(X), it holds δ(z) = z and δ(z) = z.

Proof. Let z = δ(x) for some x ∈ X. We have that z ∈ [δ(x), x]. If z = x, then we have that

δ(z) = δ(x) = z. If z < x, given property (ii) in Proposition 1, we must have δ(z) = δ(x) = z.

The proof for z ∈ δ(X) is symmetric, using property (iii) in Proposition 1.

Let δ and δ be as in (2) and define D = δ(X) and D = δ(X). First, observe that

max
z≤x:z∈D

z = max
z≤x:z∈δ(X)

z ≥ δ(x) (156)

by construction. Let z = maxz≤x:z∈D z and assume by contradiction that z > δ(x). If z = x,

then x ∈ δ(X) and by Lemma 12 we have that x = δ(x) < z, yielding a contradiction. If

instead z < x, then by Lemma 12 and the property (ii) of δ, we have z = δ(z) = δ(x),

yileding a contradiction. With this, we conclude that z = δ(x). With symmetric steps,

we can show that minz≥x:z∈D z = δ(x). Next, observe that necessarily we have δ(0) = 0,

δ(x) = x, and δ(0) = 0 proving that 0 ∈ D and 0, x ∈ D. Finally, we need to show that D

and D are closed. Take a sequence zn ∈ D such that zn → z. Given that X is closed, we

have that z ∈ X and therefore δ(z) ≤ z. Given that every zn is in D, Lemma 12 implies
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that δ(zn) = zn for all n. Given that δ is upper semi-continuous, it follows that

z = lim
n→∞

zn = lim
n→∞

δ(zn) ≤ δ(z)

which implies that z = δ(z) (as z ≥ δ(z)) and therefore that z ∈ D. This shows that D is

closed. A symmetric argument shows that D is closed.

From (D,D) to (δ, δ). Fix D and D and define, as per Equation 155:

δ(x) = max
z≤y:z∈D

z , δ(x) = min
z≥y:z∈D

z (157)

It is immediate to see that both these functions are monotone increasing, such that δ(x) ≤
x ≤ δ(x), and respectively upper semi-continuous and lower semi-continuous by Lemma

17.30 in Aliprantis and Border (2006). To see this, observe that the correspondences x ⇒

{z ∈ D : z ≤ x} and x ⇒
{
z ∈ D : z ≥ x

}
are both upper hemicontinuous. Next, assume

that y ∈ [δ(x), x) and let z = δ(x). We have δ(y) ≤ z by monotonicity. Moreover, by

assumption z ≤ y and z ∈ D, so that z ≤ δ(y) by definition. We then must have z =

δ(y). Symmetrically, assume that y ∈ (x, δ(x)] and let z = δ(x). We have δ(y) ≤ z by

monotonicity. Moreover, by assumption z ≥ y and z ∈ D, so that z ≥ δ(y) by definition.

We then must have z = δ(y). Finally, as 0 ∈ D, we have that δ(0) = 0.

B.2 The Topology of Sets of Self-Enforcing Recommendations

Let ∆ × ∆ denote the space of pairs of functions (δ, δ) that have all the properties in

Proposition 1. Recall that we endow this set with the relative topology induced by the

product L1 topology over pairs of integrable functions. Also, recall that D denotes the

collection of closed subsets of X that contain 0 and D denotes the collection of closed

subsets of X that contain 0 and x. Let D × D denote the set of pairs of self-enforcing

recommendations sets, (D,D). Recall that we have endowed this space with the product

topology induced by the Hausdorff topology on each collection of sets.

Lemma 13. The set D ×D is compact.

Proof. We show that each of D and D is compact in the Hausdorff topology. Specifically, we

explicitly establish the compactness of D and observe that an entirely symmetric argument

applies to establish the compactness of D. With this, the compactness of the product space

D ×D follows from Tychonoff’s theorem.

Observe thatD ⊂ F, where F is the collection of nonempty closed sets ofX. Theorem 3.85

in Aliprantis and Border (2006) establishes that F is compact in the Hausdorff topology. Fix
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a sequence
{
Dn

}
n∈N ⊆ D. By the compactness of F, this sequence must have a subsequence

Dnk
converging to some D ∈ F in the Hausdorff topology. Furthermore, we have that

0, x ∈ Dnk
for all k. Hence, by Hausdorff convergence of

{
Dn

}
n∈N, we have that 0, x ∈ D.

Since D is a closed subset of X that contains 0 and x, we have D ∈ D. Finally, because the

initial sequence was arbitrarily chosen, this implies that D is compact.

Next, recall that Proposition 1 and Lemma 11 imply that ∆×∆ and D×D are isomorphic

via the maps:

(δ, δ) 7→ (Dδ, Dδ) := (δ(X), δ(X)) (158)

and, for all x ∈ X,

(D,D) 7→ (δD(x), δD(x)) :=
(
max {z ∈ D : z ≤ x} ,min

{
z ∈ D : z ≥ x

})
(159)

We next prove that Hausdorff’s convergence of sets of self-enforcing recommendations implies

L1-convergence of the corresponding envelope functions to the envelope functions induced

by the limit sets.

Lemma 14. Fix two sequences
{
(Dn, Dn)

}
n∈N ⊆ D × D and

{
(δn, δn)

}
n∈N ⊆ ∆ ×∆ such

that (δn, δn) = (δDn
, δDn

) for all n ∈ N. If (Dn, Dn) → (D,D), then (δn, δn) → (δD, δD).

Proof. Fix two sequences as in the statement and assume that (Dn, Dn) → (D,D) in the

product Hausdorff topology. We only show that δn → δD in L1, as δn → δD follows from an

entirely symmetric argument. Together these two facts imply convergence in the L1 product

topology.

For notational simplicity, denote δD = δ and let Xδ ⊆ X denote the collection of points

at which δ is continuous. Because δ is non-decreasing, it follows that X \ Xδ is at most

countable. We next show that δn(x) → δ(x) for all x ∈ Xδ. Before showing this, we observe

that the previous claim concludes the argument because

lim
n→∞

∫
X

|δn(x)− δ(x)| dx = lim
n→∞

∫
Xδ

|δn(x)− δ(x)| dx (160)

=

∫
Xδ

lim
n→∞

|δn(x)− δ(x)| dx = 0 (161)

where the first equality follows from the fact that Xδ has full measure, the second equality

follows from the dominated convergence theorem, and the last equality follows from the

claim.
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Next, fix x ∈ Xδ. Clearly, if x = x, then δn(x) → δ(x) since they are all equal to x.

Thus, we next always assume that x < x. We split the rest of the proof of the claim into

two parts depending on whether x is inside or outside D.

1. Assume that x ∈ Xδ \ D and define Dn(x) = Dn ∩ [x, x] for all n as well as D(x) =

D ∩ [x, x]. We first show that Dn(x) → D(x) in the Hausdorff topology. Let Li(Dn(x)) and

Ls(Dn(x)) respectively denote the topological limit inferior and the topological limit superior

of the sequence
{
Dn(x)

}
n∈N.

27 Next, fix z ∈ D(x) and observe that z > x because x ∈ Xδ\D.

Because z ∈ D and Dn → D, it follows that there exists a sequence zn ∈ Dn such that

zn → z. In particular, we must have zn > x for all n large enough, yielding that zn ∈ Dn(x)

for all n large enough, hence that z ∈ Li(Dn(x)). Because z was arbitrarily chosen, this

implies that D(x) ⊆ Li(Dn(x)). Next, fix z ∈ Ls(Dn(x)). By definition of Ls, there exists a

sequence {zk}k∈N such that zk → z and zk ∈ Dnk
(x) along a subsequence parametrized by k.

Because Dnk
→ D in the Hausdorff topology by assumption and zk ∈ Dnk

for all k, it follows

that z ∈ D. Similarly, because zk ∈ [x, x] for all k, it follows that z ∈ [x, x], yielding that

z ∈ D(x). Because z was arbitrarily chosen, this implies that Ls(Dn(x)) ⊆ D(x) and overall

that D(x) = Li(Dn(x)) = Ls(Dn(x)). Theorem 3.93 in Aliprantis and Border (2006) then

yields that Dn(x) → D(x) in the Hausdorff topology. Finally, because δn(x) = minDn(x)

for all n and δ(x) = minD(x), Theorem 17.31 in Aliprantis and Border (2006) implies that

δn(x) → δ(x).

2. Assume that x ∈ Xδ ∩D and define Dn(x) for all n and D(x) as above. Also, let intD

and ∂D respectively denote the interior and the boundary points of D. First, observe that

δ(x) = x because x ∈ D. We next show that, for every ε > 0, there exists a point xε ∈ D(x)

such that 0 < |xε − x| ≤ ε. We split the proof of this claim into two cases:

a. If x ∈ intD, then the claim is immediately true because intD is open.

b. Assume now that x ∈ ∂D and, by contradiction, that there exists ε > 0 such that for

all z ∈ D(x) we have either |z − x| = 0 or |z − x| > ε. Because x < x, there must be

z ∈ D(x) with |z − x| > 0, hence for all such z we must have |z − x| > ε. In turn, this

implies that D ∩ [x, x + ε] = {x}, and hence that δ(y) > x + ε for all y ∈ (x, x + ε).

With this, we have that δ is discontinuous at x, yielding a contradiction.

Next, fix ε > 0 and xε ∈ D(x) as above. Because xε ∈ D, Hausdorff convergence implies

that there exists a sequence xε
n ∈ Dn such that xε

n → xε. Moreover, because xε > x, for n

large enough we must have xε
n > x, hence that xε

n ∈ Dn. Therefore, for all n large enough,

we have

x ≤ δn(x) = minDn(x) ≤ xε
n (162)

27See for example Definition 3.80 in Aliprantis and Border (2006).
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Passing to the limits we have

x ≤ lim inf
n

δn(x) ≤ lim sup
n

δn(x) ≤ xε (163)

Because ε was arbitrarily chosen, by taking ε → 0 we conclude that limn δn(x) = x = δ(x),

as desired.

Before stating the main result of this section, observe that each cost function Γ : ∆×∆ →
[0,∞] defined over (the envelope functions of) regular contractibility correspondences induces

a cost function ΓD : D ×D → [0,∞] defined by ΓD(D,D) := Γ(δD, δD).

Proposition 8. If a cost function Γ is lower semi-continuous (resp. continuous) in the

product L1 topology, then ΓD is lower semi-continuous (resp. continuous) in the product

Hausdorff topology.

Proof. The result immediately follows from Lemma 14.

B.3 Gateaux Differentiability and Strong Monotonicity

In this section, we define (affine) Gateaux differentiability for cost functions Γ defined over

regular contractibility correspondences. Recall that we can equivalently define each Γ over

the set of pairs of functions (δ, δ) ∈ ∆ ×∆ that satisfy all the properties in Proposition 1.

Unfortunately, ∆×∆ is not convex, hence we first extend our cost functions to the convex

hull of ∆×∆.

Let Q×Q ⊆ BV (X)×BV (X) denote the set of pairs of monotone increasing functions

(q, q) defined over X such that q is upper semi-continuous, q is lower semi-continuous, q(x) ≤
x ≤ q(x) for all x ∈ X with equality at x = 0, and q(x) = x.28

Lemma 15. The set Q×Q is convex and the set of its extreme points coincide with ∆×∆.

Proof. It is immediate to see that Q×Q is convex. Moreover, one can verify that, up to a

normalization, each pair (q, q) ∈ Q×Q correspond to a pair of a CDF and quantile function

over X. In particular, each q is bounded in the first stochastic dominance order between

the Dirac measure at 0 and the uniform distribution, while each q is bounded in the first

stochastic dominance order between the uniform distribution and the Dirac measure at 1.

With this, Theorem 1 in Yang and Zentefis (2024) implies that the extreme points of Q×Q
are exactly the envelope functions (δ, δ) defined in Proposition 1.

28BV (X) denotes the set of real-valued functions of bounded variation over X.
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We next adapt the notion of (affine) Gateaux differentiability of Cerreia-Vioglio, Mac-

cheroni, Marinacci, Montrucchio, and Stanca (2024) to the present setting. We say that Γ̃

is an extension of Γ over Q×Q if Γ̃(δ, δ) = Γ(δ, δ) for all (δ, δ) ∈ ∆×∆.

Definition 7. We say that Γ is (affine) Gateaux differentiable if it admits an extension

Γ̃ over Q × Q such that, for every (q, q) ∈ Q × Q, there exist two continuous continuous

functions γ
q,q

: X → R and γq,q : X → R that satisfy

lim
t↓0

Γ̃((1− t)(q, q) + t(r, r))− Γ̃(q, q)

t
=

∫
X

γ
q,q
(x) d

(
r − q

)
(x) +

∫
X

γq,q(x) d(r − q) (x)

(164)

for all (r, r) ∈ Q×Q.29

It is standard to show that every uncertain cost of distinguishing is Gateaux differentiable

provided that λ ∈ (−∞,∞).

Proposition 9. If Γ is Gateaux differentiable and there exists ε > 0 such that for all

(q, q) ∈ Q×Q and for all x, x′ ∈ X with x ≤ x′,

γ
q,q
(x′)− γ

q,q
(x) ≥ ε(x′ − x) and γq,q(x)− γq,q(x

′) ≥ ε(x′ − x) (165)

then Γ is strongly monotone.

Proof. Fix (q, q), (q′, q′) ∈ ∆×∆ such that q ≤ q′ and q′ ≤ q, and let C and C ′ denote the

induced regular contractibility correspondences. We want to show that

Γ(q′, q′)− Γ(q, q) ≥ εL(C ′ \ C) = ε

(∫
X

(
q′(x)− q(x)

)
dx+

∫
X

(q(x)− q′(x)) dx

)
(166)

By Theorem 18 of Cerreia-Vioglio, Maccheroni, Marinacci, Montrucchio, and Stanca (2024),

there exists t ∈ (0, 1) such that

Γ̃(q′, q′)− Γ̃(q, q) =

∫
X

γ
q
t
,qt
(x) d

(
q − q′

)
(x) +

∫
X

γq
t
,qt
(x) d(q − q′) (x) (167)

where (q
t
, qt) = t(q, q) + (1 − t)(q′, q′). By applying the Riemann–Stieltjes integral version

29The integrals on the right-hand side of 164 are Riemann-Stieltjes integrals.
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of integration by parts, the right-hand side becomes:∫
X

q′(x)− q(x)dγ
q
t
,qt
(x)−

∫
X

q(x)− q′(x)dγq
t
,qt
(x) (168)

=

∫
X

(
q′(x)− q(x)

) ∂

∂x
γ
q
t
,qt
(x)dx+

∫
X

(q(x)− q′(x))

(
− ∂

∂x
γq

t
,qt
(x)

)
dx (169)

≥ε

(∫
X

(
q′(x)− q(x)

)
dx+

∫
X

(q(x)− q′(x)) dx

)
(170)

where the first equality and second inequality follow from (ii) since it implies that γ
q
t
,qt

is

monotone increasing, γq
t
,qt

is monotone decreasing, and that they are both differentiable

almost everywhere with bounded derivative.

B.4 Incomplete Information and Incomplete Contracts

In the main text, we studied contracts with incomplete information. However, as in our

applications, our analysis also applies to complete-information contracts that maximize total

surplus, rather than virtual surplus. To be concrete, define total surplus as S(x, θ) = π(x, θ)+

u(x, θ) and assume that this is strictly supermodular in (x, θ) and strictly quasi-concave in

x. The complete-information mechanism design and contractibility problems are given by:

S(C) := sup
(ϕ,ξ,T )∈I(C)

∫
Θ

S(ϕ(θ), θ)dF (θ) (171)

sup
C∈C

S(C)− Γ(C) (172)

Understanding contractibility under complete information is interesting for three reasons.

First, it allows us to understand how incomplete information affects incomplete contracts.

This is because the principal’s problem under complete information reduces to the efficient

problem.30 Second, it is directly useful for understanding the welfare effects of incomplete

contracts. Third, it allows us to study settings in which the agents have the bargaining

power and choose a contract to maximize their expected utility subject to the principal’s

participation.31

30This is because the participation constraint of each type θ must bind under complete information and so
the principal extracts full surplus from each type. Although Problem 171 is defined to include the incentive
compatibility constraint implied by incomplete information, strict supermodularity of S implies that the
global incentive compatibility constraint would be slack.

31Formally, this corresponds to the constraint that the principal’s expected payoff is no less than their
outside option (normalized to 0):

∫
Θ
(π(ϕ(θ), θ) + T (ξ(θ))) dF (θ) ≥ 0. It is then standard to show that

this participation constraint must bind at the agent’s optimal contract which in turn must solve Problem
Problem 171. Therefore, the extent of optimal contractibility must again solve Problem 172.
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All of our results apply to this problem, where J in our earlier results must simply be

substituted with S. This observation opens up the door to comparative statics results on the

extent of optimal contractibility across the incomplete-information (revenue-maximization)

and complete-information (efficient) cases. For example, the new bound on the optimal

extent of contractibility in the efficient case is |D∗
C | ≤

⌊
2
(

3xS̄2
xxf̄

ε
¯
Sxθ

+ 1
)⌋

, where D
∗
C is any

complete-information set of self-enforcing recommendations, where S̄xx = maxx,θ |Sxx(x, θ)|
and

¯
Sxθ = minx,θ Sxθ(x, θ). We denote this bound by BC , in contrast to the incomplete-

information bound B derived in the main analysis. Thus, changes in concavity and su-

permodularity induced by information rents can be seen to directly impact the difference

between efficient and revenue-maximizing contractibility. In fact, our general bounds on the

completeness of contracts can be explicitly compared:

Proposition 10 (Incomplete Information Begets Incomplete Contracts). If uxxθ ≥ 0, uxθθ ≤
0, and F satisfies the monotone hazard rate property, then B ≤ BC.

Proof. We first observe observe that, for all x, θ:

Jxx(x, θ) = uxx(x, θ) + πxx(x, θ)− h(θ)uxxθ(x, θ)

= Sxx(x, θ)− h(θ)uxxθ(x, θ)

≤ Sxx(x, θ)

(173)

where h(θ) = (1 − F (θ))/f(θ) denotes the inverse hazard rate and the last inequality uses

the assumption that uxxθ ≥ 0. We next observe that, for all x, θ:

Jxθ(x, θ) = uxθ(x, θ) + πxθ(x, θ)− h′(θ)uxθθ(x, θ)− h(θ)uxxθ(x, θ)

= Sxθ(x, θ)− h′(θ)uxθθ(x, θ)− h(θ)uxxθ(x, θ)

≥ Sxθ(x, θ)

(174)

where the last line uses the assumptions that uxxθ ≤ 0, uxθθ ≥ 0, and that the hazard

rate is monotone increasing (so the inverse hazard rate, h(θ), is monotone decreasing). The

result B ≤ BC is immediate from combining the inequalities above with the formula for the

bound.

This result provides a general set of conditions under which our bound on the complete-

ness of a contract is greater under complete information than under incomplete information.

Intuitively, under these conditions, the curvature of total surplus is greater than that of vir-

tual surplus and the supermodularity of total surplus is lesser than that of virtual surplus.

At a more basic level, these conditions imply that the gains from contracting are lesser under
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incomplete information than under complete information. Thus, the presence of information

rents under incomplete information naturally dampens gains from trade and thereby reduces

incentives for writing more complete contracts.

While not universal, the conditions of Proposition 10 are common in applied work. In

particular, the monotone hazard rate property of F and the condition that uxxθ ≥ 0 are

standard assumptions in applied theoretical work on screening (Fudenberg and Tirole, 1991;

Grubb, 2009). The condition that uxθθ ≤ 0 nests many papers that employ the parallel

demand curves assumption that uxθθ = 0. As one example, the preferences of Mussa and

Rosen (1978) (Example 1) and the preferences studied in our example (Section 4.1) satisfy

all three conditions.

This result generalizes the logic of our application in Section 4.4, in which we show that

incomplete information does indeed lead to more incomplete contracts by exactly solving

for the optimal contracts under complete and incomplete information. The intuition there

is exactly the intuition here: there are lesser gains from contracting when information is

incomplete and so contracts will be more incomplete.

C An Evidentiary Foundation of Contractibility

In this section we provide a foundation of regular contractibility correspondences C : X ⇒ X

based on a model of evidence that closely follows those of Green and Laffont (1986) and

Hart, Kremer, and Perry (2017). The key difference in our model of evidence relative to

these papers is that evidence is generated by agents’ actions rather than their types.

C.1 Evidence and Contractibility

An evidentiary correspondence E : X ⇒ Ω generates for every final action of the agent

x ∈ X a set of evidence E(x) ⊆ Ω, where (Ω,≥) is an arbitrary totally ordered set of

possible evidence. We place the following two continuity assumptions on E . First, for every
sequence xn → x and y, if E(xn) ⊆ E(y) for all n ∈ N, then E(x) ⊆ E(y). Second, for every
sequence yn → y and x such that E(x) ⊆ E(y), there exists a subsequence ynk

→ y and a

sequence xk → x such that E(xk) ⊆ E(ynk
) for all k ∈ N.

The principal can prove that the action taken by the agent x was not consistent with being

asked to take the recommended action y if there exists a piece of evidence generated by the

agent’s actions ω ∈ E(x) that could not have been generated by following the recommended

action ω ̸∈ E(y). A court can impose an arbitrarily large financial penalty if the principal

can prove that the agent did not act in accordance with the contract. However, the agent is
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innocent until proven guilty. Internalizing this, the agent would only ever take actions x that

cannot be proven to be inconsistent with the recommendation y. That is, the agent would

only consider taking actions x such that E(x) ⊆ E(y). Moreover, any such action cannot

be proved to be different from y, making these actions safe for the agent. This set of safe

actions is given by:

CE(y) = {x ∈ X : E(x) ⊆ E(y)} (175)

We call CE : X ⇒ X the contractibility correspondence induced by the evidentiary corre-

spondence E . We observe that our continuity assumptions on E immediately imply that CE

is closed-valued and lower-hemicontinuous.

Two natural conditions on the evidentiary correspondence yield regular contractibility

correspondences (and vice versa):

Proposition 11. A contractibility correspondence C : X ⇒ X is regular if and only if it is

induced by an evidentiary correspondence E : X ⇒ Ω with the following properties:

1. Definitive evidence of exclusion: for all x ∈ X, if E(x) ⊆ E(0), then x = 0.

2. Evidentiary monotonicity: for all x, x′ ∈ X, if x′ ≥ x, then E(x′) ≥SSO E(x)

Proof. (If) By Equation 175, it is immediate that any contractibility correspondence C that

is induced by some evidentiary correspondence E is transitive and reflexive. Observe that

definitive evidence of exclusion implies that C(0) = {0}, yielding excludability of C. It

remains only to show monotonicity of C. Fix y′ ≥ y, x ∈ C(y), and x′ ∈ C(y′). If x′ ≥ x,

then max{x, x′} = x′ ∈ C(y′) and min{x, x′} = x ∈ C(y). Suppose now that x′ < x. We

now show that E(x) ⊆ E(y′) and E(x′) ⊆ E(y), which yields monotonicity of C by the fact

that these claims imply that max{x, x′} = x ∈ C(y′) and min{x, x′} = x′ ∈ C(y). By

definition we have that E(x) ⊆ E(y), E(x′) ⊆ E(y′), E(y′) ≥SSO E(y), and E(x) ≥SSO E(x′).

Fix ω ∈ E(x) and ω′ ∈ E(x′). If ω ≤ ω′, as E(x) ≥SSO E(x′), we have that ω = min{ω, ω′} ∈
E(x′). As E(x′) ⊆ E(y′), this implies that ω ∈ E(y′). If ω > ω′, as ω ∈ E(x) ⊆ E(y) and

ω′ ∈ E(x′) ⊆ E(y′), we know that ω = max{ω, ω′} ∈ E(y′) by the fact that E(y′) ≥SSO E(y).
These steps imply that E(x) ⊆ E(y′). Now fix ω ∈ E(x′) and ω′ ∈ E(x). If ω > ω′, we have

that ω = max{ω, ω′} ∈ E(x) as E(x) ≥SSO E(x′). As E(x) ⊆ E(y), this implies that ω ∈ E(y).
If ω ≤ ω′, as ω ∈ E(x′) ⊆ E(y′) and ω′ ∈ E(x) ⊂ E(y), we have that ω = max{ω, ω′} ∈ E(y)
as E(y′) ≥SSO E(y). These steps establish that E(x′) ⊆ E(y).

(Only If) Fix C ∈ C and define Ω = X and E(y) = C(y) for all y ∈ X. We first show

that:

CE(y) = {x ∈ X : E(x) ⊆ E(y)} = {x ∈ X : C(x) ⊆ C(y)} = C(y) (176)

where the first two equalities are by definition. The final equality follows from two ob-
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servations. First, fix x ∈ C(y) and note by transitivity of C that C(x) ⊆ C(y), which

implies that C(y) ⊆ {x ∈ X : C(x) ⊆ C(y)}. Now fix z ∈ {x ∈ X : C(x) ⊆ C(y)},
which means that C(z) ⊆ C(y) and we note that z ∈ C(z) by reflexivity, implying that

{x ∈ X : C(x) ⊆ C(y)} ⊆ C(y). We now establish that 1. and 2. are satisfied. Consider

E(x) ⊆ E(0), by excludability we have that E(x) ⊆ C(0) = {0}. By reflexivity we have that

x ∈ C(x) and therefore x ∈ E(x). This implies that x = 0, establishing definitive evidence

of exclusion. Monotonicity follows immediately from the fact that E = C.

Thus, so long as higher actions generate higher evidence and the principal can always

prove they excluded the agent, regularity of the contractibility correspondence is ensured.

We take this as a foundation for our focus on regular contractibility correspondences.

The evidentiary model considered here is one in which the principal has evidence and

the agent is considered innocent until proven guilty. However, alternative legal protocols

are possible. One possibility is the opposite to what is studied above: the agent is guilty

until proven innocent. Moreover, the agent has the evidence and can tell the truth and

nothing but the truth, but perhaps not the whole truth. In mathematical terms, they can

produce a subset Ω0 ⊆ E(x) of the evidence that they generate. It is immediate that the

strongest possible evidence of innocence for an agent recommended y is E(y). Thus, the

set of safe actions under this evidentiary standard becomes the set of actions such that

E(y) ⊆ E(x). Similar monotonicity and exclusion conditions on E characterize regularity

of the induced contractibility correspondence. Yet further, it is possible to combine both

evidentiary standards: the agent can safely take an action if E(y) ⊆ E(x) and E(x) ⊆ E(y),
i.e., E(y) = E(x). This provides a foundation for focusing on contractibility correspondences

that partition the action space. We leave a further exploration of legal procedure and

contractibility to future work.

C.2 Costs of Evidence and Contractibility

We have provided an evidentiary foundation for regular contractibility correspondences. It is

then natural to ask if the cost functions we have considered can be justified in the same terms.

We will describe an evidentiary correspondence as regular if it satisfies both conditions of

Proposition 11 and we let the set of regular evidentiary correspondences be E . We can then

define a cost function on the space of regular evidentiary correspondences as Γ̃ : E → [0,∞].

Towards defining what it means for Γ̃ to be monotone, we first define an order over

evidentiary correspondences. We say that E ′ generates more refined evidence than E , which
we denote by E ′ ≿ E , if for all x, y ∈ X such that E ′(x) ⊆ E ′(y) we also have that E(x) ⊆ E(y).
In words, this means that E ′ generates more refined evidence than E if every time that x
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cannot be proven by the principal to be inconsitent with y using evidence generated by E ′,

the same is true if evidence were generated by E . Observe that E ′ ≿ E if and only if CE ′ ⊆ CE .

Thus, this order over evidence is equivalent to our order of having more contractibility in

the main analysis.

We say that Γ̃ is monotone if whenever E ′ ≿ E , then we have that Γ̃(E ′) ≥ Γ̃(E). We

argue that this is a natural property for a cost to possess: if an evidentiary correspondence

generates more refined evidence, then it costs more.

We now show that monotonicity of Γ̃ justifies writing costs directly over contractibility

correspondences. Formally, we define what it means for a cost function to be measurable in

the induced contractibility correspondence as:

Definition 8 (C-measurability). Γ̃ is C−measurable if there exists a Γ : C → [0,∞] such

that for all E ∈ E , we have that Γ̃(E) = Γ(CE).

If Γ̃ is C−measurable, we call the corresponding Γ the induced cost. We can now state

the following result:

Lemma 16. If Γ̃ is monotone, then it is C−measurable.

Proof. Fix an arbitrary pair of evidentiary correspondences E , E ′ ∈ E such that CE = CE ′ .

We have that CE ⊆ CE ′ , which implies that E ≿ E ′. By monotonicity of Γ̃ we have that

Γ̃(E) ≥ Γ̃(E ′). By the reverse argument, we have that Γ̃(E ′) ≥ Γ̃(E). Hence, we have that

Γ̃(E ′) = Γ̃(E) for all E , E ′ ∈ E that induce the same contractibility correspondence. Take

Γ(CE) = Γ̃(E). Thus, Γ̃ is C−measurable with induced Γ.

This result implies that whenever costs are monotone in the natural sense over underlying

evidentiary correspondences, it is without loss of optimality to directly write the cost in the

space of contractibility correspondences. This justifies the approach of so doing that we

adopt in the main analysis.

We now define the relevant notion of strong monotonicity for costs over evidentiary

correspondences and show that it implies strong monotonicity for the induced cost over

contractibility correspondences. To do this, we first define costs of distinguishing in the

space of evidentiary correspondences. For any g ∈ G, we write the evidentiary cost of

distinguishing as:

Definition 9 (Evidentiary Cost of Distinguishing). For any g ∈ G, the evidentiary cost of

distinguishing outcomes is given by:

Γ̃g(E) =
∫
E(x)∩E(y)c ̸=∅

g(x, y) dx dy (177)
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This cost says that the principal incurs a cost of g(x, y) whenever taking action x ∈ X

generates a piece of evidence ω ∈ E(x) such that that evidence could not have been generated

by following the recommendation y ∈ X (i.e., ω ̸∈ E(y)). That is, if it is possible to prove x

inconsistent with y, then the principal incurs the cost g(x, y) > 0. It is immediate to observe

that an evidenitary cost of distinguishing is equivalent to a cost of distinguishing defined

over contractibility with the same g:

Γ̃g(E) = Γg(CE) (178)

Thus, costs of distinguishing have a natural evidentiary foundation.

As in the main analysis, we call an evidentiary cost of distinguishing linear if g(x, y) = κ >

0 and we write this cost function as Γ̃κ. We can now define evidentiary strong monotonicity:

Definition 10 (Evidentiary Strong Monotonicity). An evidentiary cost function Γ̃ is strongly

monotone if there exists ε > 0 such that, for all E , E ′ ∈ E such that E ′ ≿ E:

Γ̃(E ′)− Γ̃(E) ≥ ε
(
Γ̃1(E ′)− Γ̃1(E)

)
(179)

With this, we show that evidentiary strong monotonicity implies strong monotonicity:

Proposition 12. If Γ̃ is strongly monotone with constant ε > 0, then the induced Γ is

strongly monotone with the same constant ε.

Proof. We first observe that strong monotonicity of Γ̃ implies monotonicity of Γ̃. Thus, by

Lemma 16, we have that Γ̃ is C−measurable and therefore has an induced Γ. Now fix an

arbitrary pair E , E ′ ∈ E such that E ′ ≿ E , we have that:

Γ(CE ′)− Γ(CE) = Γ̃(E ′)− Γ̃(E) ≥ ε
(
Γ̃1(E ′)− Γ̃1(E)

)
= ε

(
Γ1(CE ′)− Γ1(CE)

)
(180)

where the first equality is by C−measurability, the first inequality is by strong monotonicity

of Γ̃ and the final equality is by equivalence of costs of distinguishing (Equation 178). Thus,

as E ′ ≿ E ≡ CE ′ ⊆ CE , we have established strong monotonicity of Γ.

Summary. We have shown that: (i) monotone costs of evidence justify writing costs di-

rectly over contractibility, (ii) strongly monotone costs of evidence yield strongly monotone

costs of contractibility, and (iii) costs of distinguishing defined over evidence are equivalent

to costs of distinguishing defined over contractibility. We therefore argue that the assump-

tions we place on costs and the main class of costs that we consider in the main analysis

have an evidentiary foundation.
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D Beyond Strongly Monotone Costs

In this Appendix, we discuss the boundaries of the coarse contracting prediction under

alternative costs that fall outside the strongly monotone class. We show that: (i) some costs

motivated by writing clauses deliver coarse contracts while some do not, (ii) costs motivated

solely by enforcing contracts ex post do not deliver coarse contracts, and (iii) menu costs do

not necessarily deliver coarse contracts.

D.1 Clause-Based Costs

One natural source for costly contractibility is a fixed cost for enumerating each relevant

outcome. We say a cost is clause-based if it depends only on the cardinality of C, which can

be interpreted as the number of clauses in the contract. These costs do not satisfy strong

monotonicity, because they are insensitive to the structure of contractibility. Nevertheless,

it is possible to recover the spirit of strong monotonicity and derive a sufficient condition

for optimally coarse contracts in this class. This will highlight that the prediction of incom-

pleteness is sensitive to the parametric structure of clause-based costs: while coarseness is

guaranteed for any cost of distinguishing, not all clause-based costs will deliver incomplete

contracts.

Definition 11 (Clause-Based Costs). A contractibility cost is clause-based if, for any C ∈ C,
we can write Γ(C) = Γ̂(|C(X)|), where Γ̂ : N∪{ℵ0, 2

ℵ0} → [0,∞] is a lower semi-continuous

and strictly increasing function with the normalization that Γ̂(2) = 0.

For such clause-based costs, we will discipline the rate at which marginal costs of adding

a clause decline to zero with the following definition:

Definition 12 (Clause Strong Monotonicity). We say that a clause-based Γ, induced by Γ̂,

is β−clause strongly monotone for β ∈ R if there exists ε > 0 such that:

lim inf
K→∞

(Γ̂(K + 1)− Γ̂(K))Kβ ≥ ε (181)

We illustrate clause-based costs and β−clause strong monotonicity in the following three

illustrative examples:

Example 7 (Linear Costs). Consider the linear cost Γ̂(K) = K − 2, studied by Dye (1985)

and Battigalli and Maggi (2002) in their analysis of optimally incomplete contracts. This

cost is β−clause strongly monotone if and only if β ≥ 0. △
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Example 8 (Decreasing Marginal Costs). Consider the following cost with decreasing marginal

costs of additional clauses Γ̂(K) = 1
2
− 1

K
, which is bounded and converges to 1

2
as the number

of clauses become infinite. This cost is β−clause strongly monotone if and only if β ≥ 1. △

Example 5 (continuing from p. 20). Consider a cost with increments that are some power

of the number of clauses written so far, i.e., Γ̂(K)− Γ̂(K − 1) = (K − 2)α for some α ∈ R,
which yields a cost Γ̂(K) =

∑K−2
k=1 k−α. This cost is β−clause strongly monotone if and only

if β ≥ α. △

It is obvious that any unbounded clause-based cost, such as the linear cost, implies a

coarse contract. It is less obvious when coarseness will be obtained for bounded clause-based

costs, such as Γ̂(K) = 1
2
− 1

K
as marginal costs converge to zero as contractibility becomes

perfect. The next proposition ties the optimality of coarse contracts to β−clause strong

monotonicity.

Proposition 13. If Γ is clause-based and β−clause strongly monotone for some β < 3, then

every optimal set of self-enforcing recommendations is finite with |D∗| ≤ 2+

⌊(
6xJ̄2

xxf̄
ε
¯
Jxθ

) 1
3−β

⌋
.

Proof. We first prove that D
∗
is finite. We first rule out the case in which the cardinality

of D is infinite but D ̸= X, or contractibility is not perfect. Under clause-based costs,

Γ(D) = Γ(X), or there is no increase in cost to consider perfect contractibility. However,

J (X) ≥ J (D). Therefore, there must also be a solution with perfect contractibility. It will

therefore suffice to show that perfect contractibility cannot be optimal.

To do this, we show that there is a strict payoff improvement from replacing perfect

contractibility with a uniform grid of K points, evenly spaced with width x/K. Recall

that ϕP denotes the assignment under perfect contractibility, let ϕ∗
K denote the assignment

under the grid, and let GK = {xi/K}Ki=1 ∈ D denote the grid. To derive the benefits of

this contractibility correspondence, we apply a close variant of Lemma 2. Using the bound

derived in the proof of that result for |J(ϕP (θ), θ)− J(x, θ)| for any x, we derive

J (X)− J (GK) =

∫ 1

0

(J(ϕP (θ), θ)− J(ϕ∗
n(θ), θ)) dF (θ)

≤
∫ 1

0

1

2K2
J̄xx dF (θ) =

1

2K2
J̄xx

(182)

We next observe that, if costs are clause strongly monotone, for sufficiently large n

Γ(X)− Γ(GK) ≥
∞∑

j=K

j−βε (183)
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If β ≤ 1, then Γ(X) − Γ(GK) = ∞ and it is clearly preferred to set GK . If β > 1, then we

note that

Γ(X)− Γ(GK) ≥ ε
∞∑

j=K

j−β ≥ ε

∫ ∞

K

s−β ds = ε

[
− 1

β
s−β+1

]∞
K

=
ε

β
K−β+1 (184)

where the first inequality uses the fact that s−β is a decreasing function for s > 0, and

therefore the integral is smaller than its approximation via left end-point steps (i.e., the

sum). In this case, we have

J (GK)− Γ(GK) ≥ J (X)− Γ(X) +

(
ε

β
K−β+1 − 1

2
J̄xxK

−2

)
(185)

Yielding a contradiction to optimality for β < 3:

K >

(
β

2ε
J̄xx

) 1
3−β

→ J (GK)− (Γ(GK)− J (X)− Γ(X)) ≥ 0 (186)

We now derive the bound on the number of clauses. Our overall strategy will be to show

that, if the number of clauses exceeded the claimed upper bound, then we could remove

one clause and achieve a strict improvement. We first observe that, in a K clause contract,

there must exist some ordered triple of points (xm−1, xm, xm+1) such that xm+1 − xm−1 <

2x/(K − 2). Otherwise, there would be a contradiction:

xK − x1 =

⌊K/2⌋∑
j=1

x2j+1 − x2j−1 ≥ ⌊K/2⌋ 2x

K − 2

>

(
K

2
− 1

)
2x

K
2
− 1

> x

(187)

We first apply the third statement of Lemma 2 to bound the loss from eliminating con-

tractibility at some point xm:

J (D
∗
)− J (D

∗ \ {xm}) ≤ 3
J̄2
xxf̄

¯
Jxθ

(xm − xm−1)(xm+1 − xm)(xm+1 − xm−1)

≤ 3

4

J̄2
xxf̄

¯
Jxθ

(xm+1 − xm−1)
3

(188)

where in the second inequality we use the fact that maxw+y≤z wy = z2/4. Next, applying
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the clause strong monotonicity of Γ(D) = Γ̂(n(D)) to a K-clause contract, we have

Γ̂(K)− Γ̂(K − 1) ≥ ε(K − 1)−β > ε(K − 2)−β (189)

A sufficient condition for the principal to prefer to remove contractibility at point xm is if

the lower bound on cost reduction is larger than the upper bound on benefits loss, or

ε(K − 2)−β >
3

4

J̄2
xxf̄

¯
Jxθ

(xm+1 − xm−1)
3 (190)

We now take xm+1 − xm−1 < 2x/(K − 2) and re-arrange this to

K > 2 +

(
6xJ̄2

xxf̄

ε
¯
Jxθ

) 1
3−β

(191)

Thus, if K exceeds the right hand side, then we have found a contradiction to the optimality

of the clause-based contract.

Our step of calculating the value of a coarse contract in in the proof of Proposition 13 has

precedents in the literature. In particular, Wilson (1989) shows under perfect information

that coarsening the domain of contractibility into uniform cells is second-order in the length of

the grid. Extending these ideas, Bergemann, Yeh, and Zhang (2021) show that this remains

true with private information. By contrast, our earlier arguments away from clause-based

costs that must consider set-valued perturbations are without precedent to our knowledge.

The third step shows that, when costs are β−clause strongly monotone for β < 3, there is

a fine enough grid that beats perfect contractibility, thereby contradicting that any infinite-

support contractibility is optimal. Finally, the bound follows from using a similar argument

to contradict the optimality of points spaced too close together.

To illustrate this result, let us return to the example Γ̂(K) = 1
2
− 1

K
. As this cost is

β-clause strongly monotone for β = 1 < 3, we have that the optimal contract is necessarily

coarse. Moreover, we have a bound on the number of clauses which is given by 2+
⌊√

6xJ̄2
xxf̄

¯
Jxθ

⌋
.

Thus, despite the fact that the marginal cost of additional clauses converges to zero, there

is nevertheless a finite bound on the number of clauses.

When a cost function is not β-clause strongly monotone for β < 3, it is possible that an

optimal contract will be complete. Thus, the issue of whether contracts are complete hinges

on the returns-to-scale in contracting in the clause-based case. In the next result, we show

that if Γ is not β-clause strongly monotone for β < 3, then optimal contracts can fail to be

coarse:
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Proposition 14. There exist a clause-based Γ that is not β−clause strongly monotone for

some β < 3 and (u, π, F ) such that |C∗(X)| = 2ℵ0.

Proof. Fix, as in Appendix A.13, u(x, θ) = (aθ + b)x − bx
2

2
, π(x, θ) = −cx, and F (θ) = θ

with Θ = [0, 1] and X = [0, 1] and suppose that b ≤ c ≤ 2a. We now provide a Γ that is not

β−clause strongly monotone for some β ≤ 3 under which the optimal set of self-enforcing

recommendations is D
∗
= [0, 1]. In particular, take Γ̂(K) = γ

∑K−2
k=1 k−α for γ > 0. By

construction Γ̂ is β-clause strongly monotone if and only if β ≥ α. Computing the first-

order condition from Proposition 6 yields, by identical calculations to Appendix A.13 but

noting that the partial derivatives of Γ0 are all zero, that the uniform grid xk = k−1
K−1

is the

optimal choice of D for any fixed K. Thus, as in Appendix A.13, we have that the principal’s

total virtual surplus is given by Π̂. The claim then follows if we can show that, for all K ≥ 3

that:

Π̂(K)− Π̂(K − 1) > Γ̂(K)− Γ̂(K − 1) (192)

as Π̂(2) > Γ̂(2) = 0. By construction, we have that Γ̂(K)− Γ̂(K − 1) = γ(K − 2)−α. Thus,

this inequality becomes:

b2

48aγ

[
(2K − 3) (2K − 1)

(K − 1)2
− (2K − 5) (2K − 3)

(K − 2)2

]
> (K − 2)−α (193)

This is equivalent to:
b2

12aγ
(2K − 3) > (K − 2)2−α(K − 1)2 (194)

We can rewrite this as:

b2

6aγ
+

b2

12aγ

1

K − 2
> (K − 2)1−α(K − 1)2 (195)

A sufficient condition for this is that:

b2

6aγ
> (K − 2)1−α(K − 1)2 (196)

If α ≥ 3, the right-hand-side is a strictly decreasing function of K. Thus, the right-hand side

is maximized at K = 3 and so D
∗
= X if b2

24aγ
> 1. Moreover, if α ≥ 3, Γ is not β−clause

strongly monotone for any β < 3, completing the proof.

We finally observe that the characterization of the optimally chosen self-enforcing rec-

ommendations in the clause-based case is the same as the characterization in Proposition 6

with a further simplification that the marginal cost term in the right of Equation 23 is zero,

as there is no contractibility cost of changing the value of any xk. Bergemann, Shen, Xu,
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and Yeh (2012) have previously studied this problem of optimally spacing grid points given

an exogenous constraint in the setting with linear-quadratic preferences and found the same

first-order condition that we have in this case. Relative to this work, we have shown how

to optimally choose such points in the presence of costs and, more substantively, how many

points the principal should elect to choose.

D.2 Back-End Costs of Contractibility

We have interpreted costly contractibility as something borne ex ante, or before the agent

takes an action. As we argued above, this could capture the principal’s front-end cost of

describing different outcomes in a legally precise way. A different foundation for costs could

instead focus on back-end costs that are borne ex post, or after the agent takes (or attempts

to take) an action. This could capture the expected cost of detecting a deviation from the

contract or litigating a deviation from the contract, more reminiscent of the classic literature

studying costly verification.

To shed light on the difference between these models, we show how an ex post variant

of our costs of distinguishing outcomes leads to optimally complete contracts. The reason

turns out to be simple: ex post costs are equivalent to additional production costs for the

principal, which do not by themselves induce coarseness. We use this observation to discuss

the applicability of our coarse-contracts prediction to scenarios in which one might expect

more costs to be borne ex ante vs. ex post.

As described in the main text, an ex post cost of distinguishing is:

Definition 13. For any g ∈ G and a recommendation function ξ : Θ → R, the ex post cost

of distinguishing outcomes is:

Γg(C, ξ) =

∫
X

∫
X\C(y)

g(x, y) dx dFξ(y) (197)

where Fξ(y) = PF [ξ(θ) ≤ y].

This differs from the ex ante cost of distinguishing as the total cost is evaluated under the

distribution of x that obtains ex post, which is Fξ, rather than under the uniform measure,

which is relevant when costs are borne ex ante.

This example hints at a fundamental difference between ex ante and ex post costs of

distinguishing outcomes: ex post costs are linearly separable over types while ex ante costs

are not. The only thing that ties different types together is δ, as this is common to all types.

However, under any Obedient mechanism, we know that ϕ(θ) = δ(ϕ(θ)). Thus, fixing ϕ, we

have pinned down δ, and the induced cost function is linearly separable over types in their
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final actions. Hence, it is as if ex post costs of distinguishing actions are a production cost.

This logic yields the following result, which implies that optimal contracts are never coarse

under ex post costs:

Proposition 15 (Ex Post Costs Do Not Yield Coarse Contracts). Under ex post costs of

distinguishing outcomes, if g(x, ·) is a decreasing function for all x ∈ X, then free disposal,

C(x) = [0, x] for all x ∈ X, is optimal.

Proof. We start by using the change of variables formula for pushforward measures to rewrite

the cost as:

Γg(C, ξ) =

∫
X

∫
X\C(y)

g(x, y)dxdFξ(y) =

∫
Θ

∫
X\C(ξ(θ))

g(x, ξ(θ)) dx dF (θ)

=

∫
Θ

[
G(δ(ξ(θ)), ξ(θ)) +G(x, ξ(θ))−G(δ(ξ(θ)), ξ(θ))

]
dF (θ)

(198)

Setting δ = 0 is without loss of optimality as δ characterizes the set of implementable

allocations by Lemma 9 and always weakly lowers costs by setting G(δ(ξ(θ), ξ(θ)) = 0.

Given this, we can further simplify the cost as:

Γg(C, ξ) =

∫
Θ

[
G(x, ξ(θ))−G(δ(ξ(θ)), ξ(θ))

]
dF (θ) (199)

By Obedience, we know that ϕ(θ) = δ(ϕ(θ)). Thus, we can write:

Γg(C, ξ) =

∫
Θ

[G(x, ξ(θ))−G(ϕ(θ), ξ(θ))] dF (θ) (200)

Moreover, we have that:

G(x, ξ(θ))−G(ϕ(θ), ξ(θ)) =

∫ x

ϕ(θ)

g(z, ξ(θ)) dz ≥
∫ x

ϕ(θ)

g(z, ϕ(θ)) dz (201)

as g(x, ·) is a decreasing function for all x ∈ X and ϕ(θ) ≥ ξ(θ) by obedience. Thus, it is

without loss of optimality to set ξ = ϕ. Given this, we have by Lemma 9 that the principal’s

problem can be written as:

max
δ

max
ϕMonotone:ϕ(Θ)⊆δ(X)

∫
Θ

[J(ϕ(θ), θ)− (G(x, ϕ(θ))−G(ϕ(θ), ϕ(θ)))] dF (θ) (202)

We observe that the constraint ϕ(Θ) ⊆ δ(X) is least restrictive when δ(X) = X and so this

is optimal. Given this, we have that C(x) = [0, x] for all x ∈ X is optimal.
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Thus, the optimal contract makes it impossible to choose an action in excess of a recom-

mendation, δ(x) = x, but allows for the possibility of free disposal. This generates no loss

in value for the principal but economizes on the costs of monitoring for disposal, which they

know will never actually happen as the agent has a positive marginal value for all units of

the good. That is, the contracting outcomes are as if contractibility is perfect.

Remark 7 (Mixing Ex Ante and Ex Post Costs of Distinguishing). Realistic scenarios might

be described as a combination of both ex ante and ex post costs of distiguishing. That is, a

principal may both have to write a contract that precisely distinguishes actions and enforce

it. We might model such scenarios by allowing the “true” cost faced by the principal to be a

weighted sum of ex ante and ex post costs. For instance, in the context of the aforementioned

examples, we could have:

Γ(C, ξ) = νΓg(C) + Γg(C, ξ) (203)

for some ν ∈ R+, where Γg(C) is some cost of distinguishing outcomes and Γg(C, ξ) is some

ex post cost of distinguishing outcomes. Provided that ν > 0, Theorem 1 holds and optimal

contracts are coarse. Moreover, the bound in Theorem 1 decreases in ν. △

Thus, our theory predicts coarser contracts in scenarios in which defining outcomes ex

ante is particularly difficult compared to scenarios in which outcomes are very well defined

but merely difficult to detect, punish, or enforce. The first category might include variable

quality services like hotel stays, vehicle rentals, or management consulting. What these

scenarios have in common is that “success,” “quality,” and/or “damage” are inherently diffi-

cult to define. While there are surely issues also with enforcement, at least some meaningful

fraction of costs comes from designing the contract in the first place (ν > 0). The second cat-

egory might include metered utilities, in which the sole difficulty is the precise measurement

of ex post usage.

D.3 Menu Costs

Another natural source of non-production costs for the principal are menu costs of various

forms: that is, costs of putting products up for sale rather than costs of delivering the final

product per se. A rich class of menu costs can be described by the expanded class of costs

Γ(C, ξ). For example, our baseline costs of distinguishing actions can be re-interpreted as a

type of menu cost that leads to coarse contract. Clause-based costs, which depend on the

cardinality of the menu, can be interpreted as a menu cost that may or may not induce

coarse contracts. In general, however, not all reasonable menu costs induce coarse contracts,

as we argue in the following eample.
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Example 9 (Menu Costs from Maximum Quality). Consider the cost function studied by

Sartori (2021), in which the indirect cost of a menu corresponds to the cost of the most

expensive quality to be produced. Formally, fix a continuous and increasing baseline cost

function c : X → R and define

Γ(C, ξ) = max
x∈ξ(Θ)

c(x) (204)

The interpretation of this cost function is that the monopolist invests ex-ante in a maximum

level of quality x of the good and then they are able to freely garble this quality by offering

any smaller level y ≤ x. It is easy to see that Γ does not satisfy the strong monotonicity

properties of Section 3, since it depends only on the largest (relevant) item on the menu. In

fact, the analysis in Sartori (2021) shows that, in general, the optimal menu offered by the

monopolist is not coarse and involves a continuum of differentiated qualities. △
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